Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость полимерных материалов к растворителям

    Электропроводящие пластины применяются для настила на полы, столы и, другие рабочие места. Пластины устойчивы- к растворителям и агрессивным средам. Удельное объемное сопротивление р1 = Ш ч-10 Ом-м, предел прочности при разрыве — 90-10 Па. Электропроводящий полимерный материал поставляется в виде листов длиной 10— 12 м, шириной 1200 мм и толщиной 3,5 мм. [c.123]


    Структурные особенности полимерных пленок определяются их формой, при которой отношение площади поверхности изделия к его объему очень велико. Поэтому те свойства пленок, которые в наибольшей степени зависят от их структуры, определяются свойствами поверхностных слоев, которые у большинства пленок существенно отличаются от свойств материала, удаленного от поверхности. Наиболее резким отличием структуры поверхностных слоев от структуры в объеме характеризуются, в частности, все пленки, изготавливаемые формованием из растворов на твердую подложку. Это обусловливает специфичность свойств поверхностных слоев. Изложенное хорошо иллюстрируется работами по изучению, струк-туры эфироцеллюлозных пленок, полученных формованием из растворов на твердой подложке [5]. Отличия в структуре слоев определяются структурными особенностями верхней или, как принято называть, воздушной стороны пленки и нижней ( зеркальной ) стороны. Следовательно, пленочные материалы, формуемые на твердой подложке, отличаются существенной слоевой структурной неоднородностью (рис. 1.1), причем в общем виде можно различить, по крайней мере, три слоя с различной структурой. Верхний ( воздушный ) слой, соприкасающийся в процессе формования пленки с воздухом, характеризуется наибольшей плотностью упаковки структурных образований в результате наиболее полно прошедших релаксационных процессов. Этому способствуют процессы диффузии молекул растворителя из глубинных слоев на поверхность пленки по мере ее высушивания при пленкообразовании. В то же время нижний ( зеркальный ) слой пленки, соприкасающийся с зеркальной твердой поверхностью, па которой осуществлялось формование пленки, обладает наименее устойчивой плоскостно-ориентированной структурой в результате фиксирующего действия твердой подложки при [c.20]

    Так, большинство волокон из гибкоцепных полимеров подвергается ориентационной вытяжке в процессе их получения. Если вслед за этим произошло стеклование полимерной системы (благодаря охлаждению расплава или испарению растворителя из формующейся нити), то ориентированное состояние сохраняется практически бесконечно долго. Об этом свидетельствуют сохранение высокой прочности волокон на разрыв, в несколько раз превосходящей прочность изотропного материала, а также высокое и устойчивое во времени значение двойного лучепреломления. Аналогичное положение имеет место и для полимерных пленок, которые в процессе их изготовления подвергаются одноосному растяжению (по ходу машины) и сохраняют существенное различие в механических свойствах (прочности, относительном удлинении при разрыве и модуле упругости) в продольном и поперечном направлениях. [c.27]


    Каучук синтетический (СК) — высокополимерный каучукоподобный материал. К. с. обычно получают полимеризацией или сополимеризацией бутадиена, стирола, изопрена, хлорпрена, изобутилена, нитрила акриловой кислоты. Подобно натуральному каучуку К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч и даже миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространсвеииая сетка, получаемая при этом резина приобретает характерные физико-механические свойства. Некоторые виды К. с. (напр., полиизобутилен, силиконовый каучук и др.) представляют полностью предельные соединения, и поэтому для их вулканизации применяют органические пероксиды, амины и др. Отдельные виды К. с. по ряду технических свойств превосходят натуральный каучук (по устойчивости к растворителям, термостойкости, сопротивлению к истиранию, светостойкости). В отличие от натурального каучука, содержащего природные защитные вещества, для переработки К. с. в резину требуется вводить антиоксиданты. К. с. применяют для изготовления резин и резиновых изделий для автомашин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.65]

    Перечисленные выше приемы фиксации пористости оставляют полученный пористый материал неустойчивым к действию исходного растворителя после набухания в нем устойчивость к капиллярной контракции вновь исчезает. Более эффективны приемы, основанные на необратимом химическом модифицировании полимерной фазы, приводящем к ее лиофобизации и к уменьшению деформируемости. Так, оводненные конденсационные структуры поливинилформаля невысокой степени ацеталирования приобретают устойчивость к капиллярной контракции после различных видов модифицирующей химической обработки (например, после дополнительного ацеталирования [66]), которые вызывают изменения свойств полимера, вполне аналогичные тем изменениям, каким подвергается коллаген в процессах дубления, применяемых для получения натуральной пористой кожи [67]. [c.328]

    Сшитую полимерную дисперсию в алифатическом углеводороде (интервал температур выкипания 80—140 °С) получали дисперсионной полимеризацией смеси бутандиолмонометакрилата, этилакрилата, метилакрилата и акрилонитрила в присутствии привитого стабилизатора на основе 2-этилгексилакрилата, бутандиолмонометакрилата и толуилендиизоцианата [17]. Ткань из найлона-б обрабатывали этой дисперсией, а затем сушили при 90 °С в течение 5 мин. Оказалось, что после такой обработки получается мягкая на ощупь и чрезвычайно устойчивая к растворителям ткань. Описана модификация волокнистого материала стабилизированной дисперсией кислотного полимера в хлорированном углеводороде [c.308]

    В последнее время синтезирован ряд новых полимерных фторидов. Например, сополимер тетрафторэтилена с трифторхлорэтиленом [138], сополимер тетрафторэтилена с трифторпитрозометаном [128] (см. стр. 253), отличающиеся повышенной хемостойкостью. Поливинилфторид (полимер R) [—СНг— HF—]х представляет собой новый полимер, обладающий высокой термостойкостью [137] он плавится при температуре выше 200° С и, ълагодаря высокой прочности и сравнительной доступности, найдет, очевидно, широкое применение [138]. Пленка из поливинилфторида, выпускаемая под названием теслар , характеризуется большой устойчивостью к действию кислот, щелочей и растворителей [139]. Она по своей прочности превосходит майлар [137] и может применяться в интервале температур от —100 до +200° С. Диэлектрическая постоянная 7,5. Поливинилфторид более устойчив но сравнению с тефлоном к действию пучка электронов [140]. Пленка из него отличается большой погодоустойчивостью и поэтому особенно пригодна для применения в сельском хозяйстве (для парников), а также в качестве изоляционного материала. [c.191]

    Эффективность ремонта можно значительно повысить, используя новые материалы, например синтетические анаэробные (локтайты и др.), которые уже находят применение в ремонтной практике. Эти материалы остаются жидкими до тех пор, пока имеется доступ воздуха к ним. В отсутствие кислорода материал превращается в твердое полимерное вещество. Такие материалы очень удобны для уплотнения поверхностей (разъемов корпусов, фланцевых соединений и т. п.), обладая сильным капиллярным действием, они заполняют мельчайшие полости и образуют высокогерметичное уплотнение, устойчивое к воздействию влаги, коррозии и вибрации. Уплотнение работоспособно при температурах до 200 °С и давлении до 3,5 МПа. Уплотняющий материал наносят кистью или выдавливают из тюбика. При разборке соединения затвердевшие остатки уплотнителя удаляют шабером или специальными растворителями. [c.184]

    ВУЛКАНИЗАЦИЯ — технологич. процесс резинового произ-ва, при к-ром пластичный сырой каучук превращается в эластичную резину — материал, обладающий лучшими, чем каучук, физико-механич. и эксплуатационными свойствами. В большинстве случаев В. каучуков общего назначения (натуральный, бутадиеновый, бутадиен-стирольный) производится серой или какими-либо другими химич. агентами, к-рые образуют химич. связи между молекулами каучука. В результате такого процесса образуется пространственная молекулярная сетка со специфич. свойствами вулкапизата — наличием конечного значения модуля эластичности и неспособностью к самопроизвольному растворению в обычных растворителях сырого каучука. В. может быть ускорена добавлением небольших количеств органич. соединений ускорителей В. (см. Вулканизации ускорители). Многие ускорители являются эффективными только в присутствии активаторов — окислов металлов (напр., окиси цинка), действие к-рых проявляется в присутствии жирных к-т, образующих с окислами металлов соли, растворимые в каучуке. Таким образом, в состав вулканизующей группы обычно входит сера, ускоритель, активатор и к-та жирного ряда. Для предотвращения преждевременной В. в резиновую смесь вводят вулканизации замедлители. Ири термич. разложении вулканизующего агента или ускорителя, а также в результате реакций меноду ускорителями и серой образуются свободные радикалы, к-рые или присоединяются к двойным связям каучука, или отнимают атом водорода от а-метиленовой группы углеводородной цепи полимера. Свободный полимерный радикал взаимодействует с двойной связью соседней полимерной цепи, что приводит, т. о., к развитию полимериза-ционной цени, длина к-рой обычно мала. Свободный полимерный радикал может также взаимодействовать с друд ими радикалами и атомными группировками с образованием поперечных химич. связей между молекулами каучука. В зависимости от типа полимера и особенно от состава вулканизующей группы при В. образуются поперечные связи различного характера -—С—С— —С—8—С— —С—8 —С—. Состав, концентрация, распределение и энергия этих связей определяют многие важнейшие физико-механич. свойства вулканизатов. Так, если возникают преимущественно устойчивые поперечные связи (бессерная В., термовулканизация, радиационная В.), то это приводит к образованию резин, обладающих высокой стой- [c.337]



Смотреть страницы где упоминается термин Устойчивость полимерных материалов к растворителям: [c.84]    [c.52]    [c.172]    [c.245]    [c.191]    [c.337]    [c.470]    [c.191]    [c.470]   
Смотреть главы в:

Физико-химия полимеров 1963 -> Устойчивость полимерных материалов к растворителям




ПОИСК





Смотрите так же термины и статьи:

Полимерные материалы



© 2024 chem21.info Реклама на сайте