Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение карбоксильных групп в полимерной кислоте

    Среди высокомолекулярных соединений важное место занимают белки. Они играют основную роль во всех жизненных процессах, а продукты их переработки — в технике и производстве. Белки являются полимерными электролитами, так как их молекулы содержат ионогенные группы. Поэтому растворы белков имеют целый ряд особенностей по сравнению с растворами других полимеров. В состав молекул белков входят разнообразные а-аминокислоты, в общем виде формула их строения может быть записана в форме КНг — К — СООН. В водном растворе макромолекула представляет амфотерный ион КНз — К — СОО . Если числа диссоциированных амино- и карбоксильных групп одинаковы, то молекула белка в целом электронейтральна. Такое состояние бедка называют изоэлектрическим состоянием, а соответствующее ему значение pH раствора — изоэлектрической точкой (ИЭТ). Чаще всего белки — более сильные кислоты, чем основания, и для них ИЭТ лежит при pH < 7. При различных pH изменяется форма макромолекул в растворе. В ИЭТ макромолекулы свернуты в клубок вследствие взаимного притяжения разноименных зарядов. Б кислой и щелочной средах в макромолекуле преобладают заряды только одного знака, и вследствие их взаимного отталкивания молекулы распрямляются и существуют в растворе в виде длинных гибких цепочек. Поэтому практически все свойства растворов белков проходят через экстремальные значения в изоэлектрическом состоянии осмотическое давление и вязкость минимальны в ИЭТ и сильно возрастают в кислой и щелочной средах вследствие возрастания асимметрии молекул, минимальна также способность вещества к набуханию, оптическая плотность раствора в ИЭТ максимальна. Изучение всех этих свойств используется для определения изоэлектрической точки белков. [c.443]


    Аналогия в поведении чистой полиакриловой кислоты и ее бариевой соли, проявляющаяся в образовании одинаковых вторичных структур и отдельных симметричных глобул, представляющих собой свернутые молекулярные цепочки, находит свое объяснение в одинаковой конфигурации длинноцепочеч-ных полиионов в растворе. Полиакриловаякислотанредставляетсобойслабый полимерный электролит. Слабая кислота в чистом растворителе (в данном случае в воде) ионизирована только частично, и внутримолекулярные электростатические силы отталкивания между ионогенными группами (карбоксильными группами), соединенными ковалентными связями с молекулярной цепочкой, малы и недостаточны для выпрямления молекул. Гибкий полиион под действием термических сил сворачивается в случайную кольцевую конфигурацию. Правда, подобный полимерный клубок будет обладать более диффузной структурой по сравнению с полиакрилатом бария, где к термическим силам будут прибавляться большие внутримолекулярные силы, обусловленные присутствием двухвалентного бария и взаимодействием его с карбоксильными группами, стягивающими клубок в более плотное образование. И величины вязкостей, определенные для полиакриловой кислоты и полиакрилата бария, подтверждают более диффузную структуру молекулярных клубков полиакриловой кислоты по сравнению с ее бариевой солью. [c.112]

    Скорость омыления зависит от положения реакционноспособных групп в молекуле. Если карбоксильная группа связана непосредственно с углеродом полимерной цепи, как, например, в метилакрилате, то омыление эфира затрудняется. Введениеа-метильной группы, как в метилметакрилате, создает стерические препятствия, которые очень затрудняют омыление даже мономера. Вследствие стерических препятствий однажды образовавшиеся связи эфира смоляной кислоты очень устойчивы к кислотному или основному гидролизу. Легко омыляются эфиры, содержащие гидроксильные группы, связанные непосредственно с атомами углерода полимерной цепи, как, например, в ацетилцеллюлозе или поливинилацетате. Некристаллические и кристаллические формы полиметилметакрилата также проявляют различную химическую реакционную способность. Аморфные и син-диотактические полимеры гидролизуются относительно медленно по сравнению с изотактическими [53]. Поэтому различная скорость омыления может быть использована для идентификации полимеров и для разделения физических смесей таких полимеров. Холл и Шефер [58] рассмотрели омыление легко и трудно омыляемых эфиров и предложили методику для определения чисел омыления. [c.73]


    Тщательное изучение методов анализа мыл, жирных и смоляных кислот привело к созданию стандартных методик, принятых Американским обществом испытаний материалов и Американским обществом химиков-нефтяников. Обычный метод определения общего содержания жирных кислот или мыла включает экстрагирование спиртом или другим соответствующим растворителем с последующим выпариванием досуха [39]. За последние годы было предложено несколько быстрых методов объемного определения жирных кислот [40]. Одним из наиболее интересных методов, особенно пригодным для сильно разбавленных растворов, является титрование катионактивным веществом---цетилтриметиламмонийбромидом (цетаб) с метиленовым синим в хлороформе в качестве индикатора [41]. Описано также применение кондуктометричес-ких и потенциометрических методов для определения жирных кислот и полимерных поверхностноактивных веществ, содержащих карбоксильные группы [42]. Бланк успешно применял для определения мыла методы микроанализа [43]. [c.248]

    Интересные результаты были получены при исследовании связывания катионов со стереорегулярной полиметакриловой кислотой. Катион Си + был прочнее связан с изотактическим полиионом [869], а ионы магния образовывали более устойчивый комплекс с синдиотактическим полимером [870]. Эти результаты позволяют предположить, что в образовании хелатов участвуют карбоксильные группы, которые удерживаются на строго определенном расстоянии друг от друга за счет предпочтительной конформации цепи главных валентностей. Тогда относительная устойчивость комплекса должна зависеть от геометрии хелата, характерного для данного катиона. Значение предпочтительной конформации цепи главных валентностей было убедительно нродемонстрировано в случаях, когда полимер может подвергаться переходам спираль — клубок. Связыванию катионов щелочноземельных металлов с поли-а-Ь-глутаминовой кислотой, несомненно, благоприятствует спиральная конформация полимерной кислоты [871]. Наоборот, Mg + связан более слабо с нативной спиральной формой ДНК, хотя эта форма связывает Na+ гораздо сильнее, чем денатурированная нуклеиновая кислота [872]. Другая интересная проблема возникает, если связанным компонентом является органическая молекула, имеющая две катионные группы. В этом случае вполне возможно, что расположение катионов в малых молекулах будет совпадать с расположением анионных групп в полимере, и такое соответствие должно приводить к исключительно прочному взаимодействию. По-видимому, такой эффект наблюдался для хон-дроитинсульфата-А [873] и гиалуроновой кислоты [874], которые образуют прочные комплексы с кураре [c.316]

    Трудность изучения процесса лигнификации в том, что лигнин не является индивидуальным соединением строго определенного состава. По своей химической природе он представляет собой трехмерный полимер, в состав которого входят соединения различной фенольной природы. Синтез лигнина идет через шикимовую кислоту, а также включает соединения С6—СЗ-ряда, к которому относятся оксикоричные спирты я-кумаровый, конифериловый и синаповый. Из числа оксибензойных кислот ванилиновая и особенно сиреневая кислоты в виде эфиров также включаются в лигнин [Кретович, 1986]. В этом случае для соединений лигнина характерна сложноэфирная связь, образуемая за счет фенольной гидроксильной группы одной молекулы фенолкарбоновой кислоты и карбоксильной группы другой. Так, некоторые фенольные соединения, например п-кумаровая и феруловая кислоты, могут быть связаны эфирными связями с лигнинами [S albert et al., 1985], а их превраш<-ния идут с участием фермента пероксидазы, встроенного в клеточную стенку. Предшественниками синтеза лигнина у травянистых растений являются фенилаланин и тирозин. Этот краткий перечень молекул, участвующих в образовании лигнина, в том числе полифенолоксндаза, лакказа и пероксидаза, которые катализируют образование этого сложного полимерного соединения клеточных [c.33]


Смотреть страницы где упоминается термин Определение карбоксильных групп в полимерной кислоте: [c.102]    [c.69]    [c.316]    [c.204]    [c.216]   
Смотреть главы в:

Лабораторный практикум по химии и технологии высокомолекулярных соединений -> Определение карбоксильных групп в полимерной кислоте




ПОИСК





Смотрите так же термины и статьи:

Группа С как кислота,

Карбоксильная группа

Карбоксильные группы определение

Карбоксильный ион

Кислоты полимерные



© 2024 chem21.info Реклама на сайте