Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептиды, Белки, Вода

    Фуппы (-СОО -NHз и др.), а гидратация полярных заместителей - ориентацией молекул воды в результате образования водородных связей. Молекулы гидратно-связанной белком воды можно представить в виде монослоя вокруг ионизированных И полярных групп полипептида, в то время как гидрофобные ра- [c.359]

    Представление о а-спирали и структурах типа складчатого слоя возникло не как вывод из прямых экспериментальных данных, полученных на белках, а скорее как теоретическое обобщение, основанное на изучении молекул более простых веществ. В аминокислотах один из атомов углерода, называемый а-атомом углерода (С ), расположен между амино- и карбокси-группами. Когда аминокислоты соединяются между собой (с выделением воды) в пептиды или полипептиды, группы атомов, заключенные между двумя а-атомами углерода, располагаются [c.429]


    Глобулярные белки заметно различаются по плотности упаковки и по содержанию гидратационной воды [24, 25]. Однако наиболее типична для них плотность - 1,4 г-см . При средней массе остатка в 115 дальтон наш полипептид из 300 остатков составит по массе 34 500 дальтон, или 5,74-10 г, и займет объем в 41 нм . Это может быть куб с ребром 3,45 нм, параллелепипед размерами 1,8х3,6х6,3 нм, сфера диаметром 4,3 нм или же какое-то геометрическое тело весьма неправильной формы. При расчетах молекулу белка чаще всего представляют в виде идеализированного эллипсоида или цилиндра. [c.103]

    Поясните роль водородной связи в биологических объектах на примере воды, белков, полипептидов, ДНК, РНК. [c.85]

    Можно осуществить синтез полипептидов, сходных по химическому строению с белками, в лабораторных условиях для этого сначала отщепляют воду от двух молекул аминокислот, предварительно защищая аминогруппу одной из них и карбоксильную группу другой (метод блокирования)  [c.339]

    Хорошо известно, что именно эти взаимодействия в основном и определяют пространственную структуру белков [81]. Нативный белок существует в водной среде, и природа как бы решает оптимальную задачу — полярные аминокислоты располагаются на поверхности глобулы и взаимодействуют с водой, а неполярные — спрятаны внутрь глобулы и контактируют между собой. Аналогичная ситуация может возникнуть и в полипептидах если растворитель полярный (вода), то полярные аминокислоты стремятся оказаться снаружи в неполярных растворителях следует ожидать противоположного — неполярные аминокислоты будут стремиться оказаться на поверхности. [c.111]

    Несомненной является огромная роль воды в установлении оптимальной структуры полипептидов типа коллагена [149, 152]. Вода является неотъемлемой частью пространственной структуры такого рода белков, и при понижении влажности молекулы воды, выходя из тройной спирали, заставляет полипептид принять иную конформацию (возможно, что с этим связаны вопросы старения организмов). Надо полагать, что при этом структура полипептида будет изменяться дискретно. [c.145]

    Водородная связь, возникающая между двумя одинаковыми или различными. молекулами, называется межмолекулярной. Водородная связь между двумя группами одной и той же молекулы называется внутримолекулярной. Межмолекулярные водородные связи существуют в воде, спиртах, карбоновых кислотах, амидах, белках, полипептидах и в полиокси-органических и неорганических соединениях они могут приводить к образованию цепных, циклических или трехмерных конфигураций. [c.212]


    После отгонки свободного аммиачного азота часто можно выделить еще некоторое количество аммиака добавлением к пробе анализируемой воды раствора перманганата калия в концентрированной щелочи. Это дополнительное количество аммиака представляет так называемый белковый азот и образуется в основном при действии кипящего щелочного раствора перманганата калия на аминогруппы многих аминокислот, полипептидов и белков. Эти последние азотсодержащие вещества являются важными компонентами органического распада в водах и часто требуют значительного расхода хлора на водоочистительных станциях. Извлечение азота незамещенных аминных групп при определении белкового азота составляет приблизительно 80% [170]. [c.98]

    Органически связанный азот в природных водах содержится в форме таких компонентов биологического происхождения, как аминокислоты, полипептиды и белки. Повышенное содержание органически связанного азота часто вызывается загрязнением данного источника бытовыми или промышленными сточными водами. При отборе и хранении проб воды для определения органически связанного азота нужно соблюдать те же меры предосторожности, что и при отборе и хранении проб для определения аммиачного азота. [c.99]

    По химическому строению желатина представляет собой полипептид с молекулярным весом 100 ООО. Ее можно получить в почти монодисперсной форме, однако технический продукт обычно несколько деструктирован и имеет средний молекулярный вес около 70 000. Гидролиз фибриллярного белка коллагена, выделенного из костей или шкур крупного рогатого скота или свиней, ведут в присутствии извести или минеральной кислоты. При этом происходит не только расщепление макроструктуры коллагена на отдельные цепи, но и гидролиз пептидных и других связей, вследствие чего конечное содержание концевых и боковых реакционноспособных групп, имеющее решающее значение для качества продукта, зависит от условий получения желатины. В заключение желатину экстрагируют горячей водой и выделяют из экстракта путем упаривания. [c.645]

    Как известно, основными составными частями пептидов являются а-аминокислоты К СН(КНг) -СООН в виде полипептидов, т. е. веществ, образованных соединением аминогруппы одной молекулы аминокислоты с карбоксилом другой молекулы (одинаковой или различной) аминокислоты. Пептидная связь = С — КН — СО — К, которая образуется в результате отщепления молекулы воды из амино- и карбоксильной групп, играет важнейшую роль в простых пептидах, молекулы которых представляют собой цепи из нескольких сотен аминокислот. Естественно, что строение белков более сложно. [c.375]

    Определению не. мешают катионы щелочных и щелочноземель-ны.х металлов, катионы других металлов, обуславливающих жесткость воды НПАВ, спирты при соотношении с КПАВ менее 2000 1 аминокислоты типа незаменимых, полипептиды, белки, кетоны, углеводороды и низкомолекулярные алифатические амины ( —Се) и анилин. Погрешность онределения во всем диапазоне концентраций не нревыщает 25%. [c.58]

    При растворении многих веществ в дейтериевой (ВгО) или три-тиевой (Ш2О) воде происходит обмен атомов водорода на О или Аминокислоты, нуклеозиды, короткие полипептиды, белки в конформации беспорядочного клубка и одноцепочечные нуклеиновые кислоты быстро обменивают атомы водорода, связанные с атомами азота, кислорода и серы атомы водорода, связанные с атомами углерода, обмениваются гораздо медленнее. В белках, в силу их химических свойств, способные к обмену протоны боковых групп некоторых аминокислот (например, ОН серина и NH2 глутамина и аспарагина обмениваются намного быстрее, чем протоны пептидной связи или амидных групп глутамина и аспарагина. Эти два класса протонов различают по рН-зависимости скоростей водородного обмена — первый класс имеет минимум при pH 7, второй — при pH 3. Каждый класс можно подразделить по принципу степени участия протонов в образовании водородных связей. Поскольку скорость водородного обмена обычно гораздо меньше, чем скорость образования и разрыва водородных связей (которая контролирует доступ растворителя к группам, участвующим в образовании водородных связей), наблюдаемая скорость водородного обмена для любой группы есть произведение скорости собственно водородного обмена на долю времени, в течение которого группа доступна растворителю. Таким образом, если группа участвует в образовании водородной связи, то это должно приводить к понижению скорости водородного обмена. Это происходит потому, что данная группа подвергается действию растворителя только тогда, когда имеет место локальный разрыв водородных связей. Следовательно, измеряя скорости водородного обмена для открытых групп (например, в мономерах) и скорости обхмена для аналогичных групп макромолекулы, можно определить в каждый данный момент времени долю групп, не участвующих в образовании водородных связей. [c.521]


    Несомненно влияние всех этих продуктов распада органических воп сств на поведение многих неорганических соединений морского ила и в толще воды. Так, например, известно, что соли меди в присутствии аминов, аминокислот дают более растворимые соединения. Подвижность Си увеличивается. Кстати сказать, в почвенном слое на континенте идет тот же процесс — благоприятствующий выносу Си из почвенных горизонтов. Эти же амины, аминокислоты, полипептиды, белки участвуют в стабилизации неорганических коллоидов в морской воде, так как все тяжелые металлы, прежде всего Ре +, по преимуществу находятся здесь пе в ионной форме. [c.10]

    На поверхности белков имеется большое количество гидрофильных групп, которые обусловливают создание вокруг этих макроструктур почти сплошной водной оболочки. Гидрофобные радикалы аминокислот, образующие полипептидные цепи, обращены преимущественно внутрь структуры. Несмотря на это, некоторое количество воды может быть связано и внутри белковых макроструктур. Часть гидрофильных групп может содержаться и во внутренних отделах белковых макроструктур кроме того, некоторая часть воды может быть замкнута внутри этих структур в своеобразных ячейках , образованных гидратированными полипептид-нымн цепочками. И, наконец, дипольные молекулы воды могут попросту вклиниваться в водородные связи, не нарушая при этом их прочности. Принято различать интермицеллярную воду, находящуюся в свободном состоянии между отдельными белковыми макромолекулами, и интрамицеллярную воду, находящуюся внутри белковых глобул. Для устойчивости коллоидиых частиц имеет значение только вода, создающая внешнюю водную оболочку. Именно она и препятствует столкновению и объединению белковых макромолекул. [c.339]

    АСПАРАГИН С4НаМ20а — моноамид аспарагиновой кислоты, бесцветные кристаллы, растворимые в воде. Содержится в белках и полипептидах,распространен в растительных и жквотных тканях. [c.32]

    Хроматография на бумаге. —Этот метод, введенный Мартином и Синджем2 в 1944 г., используемый теперь во всех областях химии, применим, а частности, для идентификации компонентов смеси аминокислот с дн- и трипептидами, получаемой при частичном гидролизе белков и полипептидов. Компоненты гидролизата распределяются между водой, адсорбированной на целлюлозе и являющейся неподзижной фазой, и органическим растворителем, подвижной фазой (например, водный этиловый спирт, бутиловый спирт, фенол), которая дви кется вдоль листа вверх или вниз, — восходящий или ни- [c.650]

    Свойства. Олигопептиды по св-вам близки к аминокислотам, полипептиды - подобны белкам. Олигопептиды представляют собой, как правило, кристаллич. в-ва, разлагающиеся при нагр. до 200-300 °С. Они хорошо раств. в воде, разб. к-тах и щелочах, почти не раств. в орг. р-рителях. Исключение-олигопептиды. Построенные из остатков гидрофобных аминокислот. [c.469]

    По другому методу цистиновые межцепочечные мостики окисляются бромом или бромной водой, что также приводит к образованию сульфогрупп. В случае цистина выход цистеи новой кислоты количественный. Однако при попытках окислить цистин инсулина й папаина бромом без предварительного частичного гидролиза продукты окисления были получены с невысокими выходами [316]. Для повышения степени заг вершенности окисления белки предварительно можно подвергать денатурации или восстановлению. Из окситоцина — одного Из низших полипептидов, при окислении бромной водой образуется цистеиновая кислота с хорошим выходом одновременно наблюдается специфическое расщепление тиро-зилизолейциновой связи (см. ниже раздел Бромная вода). [c.171]

    Полипептиды, так же как и сами аминокислоты, амфотерны и каждому свойственна своя изоэлектрическая точка. Они представляют собою соединения, промежуточные между аминокислотами и белками, — в условиях кислотного и щелочного гидролиза и те и другие распадаются на аминокислоты. Низшие полипептиды кристалличны, растворимы в воде по мере перехода к более высокомолекулярным полипептидам способность к кристаллизации ослабевает. Полипептиды могут также включать моно-аминодикарбоновые кислоты, подобные аспарагиновой и глутаминовой. Тогда они приобретают кислотные свойства за счет второй карбоксильной группы. Полипептиды, образованные с участием диаминокислот, имеют основной характер. Свойства полипептидов, образованных с участием серина ( -окси-а-аминопропионовой кислоты) и цистеина ( -меркапто-а-аминопропионовой кислоты), отражают наличие ОН- и соответственно SH-групп. Некоторые полипептиды играют важную биологическую роль в живых организмах. Таков, папример, трипептид глутатион [c.506]

    Данные о специфичности транспорта аминокислот через биомембраны клеток были получены при анализе наследственных дефектов всасывания аминокислот в кишечнике и почках. Классическим примером является цистинурия, при которой резко повышено содержание в моче цистина, аргинина, орнитина и лизина. Это повышение обусловлено наследственным нарушением механизма почечной реабсорбции. Цистин относительно нерастворим в воде, поэтому он легко выпадает в осадок в мочеточнике или мочевом пузыре, в результате чего образуются цистиновые камни и нежелательные последствия (закупорка мочевыводящего тракта, развитие инфекции и др.). Аналогичное нарушение всасывания аминокислот, в частности триптофана, наблюдается при болезни Хартнупа. Доказано всасывание небольших пептидов. Так, в опытах in vitro и in vivo свободный глицин всасывался значительно медленнее, чем дипептид глицилглицин или даже трипептид, образованный из трех остатков глицина. Тем не менее во всех этих случаях после введения олигопептидов с пищей в портальной крови обнаруживали свободные аминокислоты это свидетельствует о том, что олигопептиды подвергаются гидролизу после всасывания. В отдельных случаях отмечают всасывание больших пептидов. Например, некоторые растительные токсины, в частности абрин и рицин, а также токсины ботулизма, холеры и дифтерии всасываются непосредственно в кровь. Дифтерийный токсин (мол. масса 63000), наиболее изученный из токсинов, состоит из двух функциональных полипептидов связывающегося со специфическим рецептором на поверхности чувствительной клетки и другого — проникающего внутрь клетки и оказывающего эффект, который чаще всего сводится к торможению внутриклеточного синтеза белка. Транспорт этих двух полипептидов или целого токсина через двойной липидный слой биомембран до настоящего времени считается уникальным и загадочным процессом. [c.426]

    Измерение поверхностной вязкости, которая в значительной степени зависит не только от природы подложки, но и от вида белка, с этой точки зрения дает гораздо больше, так как позволяет устанавливать различие между белками. Типичная кривая я — А для белкового монослоя приведена на рис. 119. Предельная площадь на один аминокислотный остаток составляет примерно 15— 20 А . Если молекула белка в монослое принимает р-кератиновую конфигурацию и если боковые цепи направлены от полипептид-ного остова попеременно в воздух и в воду, то каждая боковая цепь в воздухе занимает площадь в 30—40 А . В точке разрушения пленка занимает площадь примерно 0,1 м /мг, откуда при среднем молекулярном весе остатка, равном 120, на один остаток должно приходиться 10—12 А . Если белок растекается в р-кератиновой форме, остаток па одной стороне (в воздухе или в воде) занимает 20—22 А . Эти предельные значения очень близки к тем, которые наблюдаются для мезофазных пленок и для конденсированных слоев жирных кислот. [c.296]

    В очистке промышленных сточных вод принимает участие большинство микроорганизмов, способных к гетеротрофному биосинтезу, ибо только они могут разрушать органические вещества. Известно, что гетеротрофы в процессе эволюции приспособились к использованию в природе тех естественных органических веществ, с которыми они встречаются в нормальных экологических условиях. Это вещества растительного и животного происхождения разной сложности углеводы от гексоз и пентоз до целлюлозы, пентозанов, лигнина и хитина азотистые вещества от аминокислот до полипептидов и прочных фибриллярных белков — кератина и коллагена, нуклеиновые кислоты и нуклеопротеиды липиды и их компоненты от глицерина и жирных кислот до сложных растительных и животных масел, жиров и жироподобных веществ — фосфолипидов, липопротеи-дов и т. д. У значительно меньшего числа микроорганизмов существует приспособленность к потреблению углеводородов нефти, озокерита, битуминозных сланцев, сапропелитов и фенолов. Они в течение длительного периода времени, охватывающего жизнь многочисленных поколений микробов, в нормальных экологических условиях вступали в контакт с этими веществами, совершенно непригодными для всего органического мира ни в [c.100]

    Земле. Согласно этой гипотезе, на поверхности частиц глины могло происходить образование полипептидов из отдельных аминокислот, растворенных в окружающей воде. Предполагается, что поверхность алюмосиликатных пластин может служить и шаблоном, и катализатором при,образовании длинных пептидных цепей или белков. Эта гипотеза исследовалась экспериментально (см. в работе [20]). Добавляя к раствору различных глинистых минералов небольшое количество аминокислоты (глицина),авторы проводили затем циклическую гидратацию и дегидратацию при одновременном периодическом изменении температуры. В контрольных экспериментах проводились циклы нагрева и охлаждения без изменения влажности. Было обнаружено, что наибольшее количество пептидов возникало в условиях, когда глина подвергалась периодическим изменениям и температуры, и влажности. На основании этих экспериментальных данных авторы предположили, что флуктуации температуры и влажности приводили к распределению и перераспределению аминокислот на поверхности частиц глины, что спосо твовало связыванию аминокислот в пептидные цепи. При добавлении воды освобождаются активные места на поверхности алюмосиликатных пластин, в которых происходит каталю при образовании пептидов из аминокислот. При повышении температуры вода испаряется и возникают новые места для катализа, доступные для других аминокислот, которые присоединяются к существующим цепям или образуют новые цепи. Поскольку в условиях древней Земли в воде присутствовало несколько сортов аминокислот, эти циклы флуктуирующей температуры и влажности могли привести к образованию сложных пептидов и предшественников больших белковых молекул. [c.61]

    Межмолекулярные водородные связи. Самый обширный класс Н-связей включает ассоциацию двух молекул одного и того же или различных соединений. Получающиеся при этом комплексы не являются только бинарными. Структуры со множественными связями существуют в жидких воде и HF, они обычны в спиртах, фенолах, амидах, белках, полипептидах, полиоксиорганических и неорганических соединениях. Межмолекулярные Н-связи могут приводить к образованию цепей, колец или пространственных сеток. В кристаллах они могут образовывать цепи, кольца, трехмерные сетки и даже спирали. [c.14]

    Уместно остановиться и на результатах Шеллмана [1809]. Измерив теплоты растворения мочевины в воде, он нашел, что в водном растворе энтальпия образования связи N — Н. . . О = С равна 1,5 ккал/моль, и перенес эту величину на белки и полипептиды. Имея дело со столь сложными объектами, он был вынужден ограничиваться приближенным рассмотрением, но ему все же удалось вывести соотношения, определяющие устойчивость спиралей и слоев как функцию энтальпии Н-связи и конфигурационной энтропии. Отсюда он сделал важный вывод, что Н-связи сами по себе обеспечивают лишь минимальную стабильность упорядоченных структур, которая может увеличиться или совсем исчезнуть в результате взаимодействия между боковыми цепями . Шеллман заканчивает свою статью обсуждением экспериментального материала, который необходимо получить, чтобы избавиться от некоторых допущений в его теоретическом анализе.  [c.271]

    Это неверное утверждение. Хотя термин полимер и употребляется в настоящее время во все более шжроком смысле слова, все же из сопоставления формулы, например гликокола и соответствующего полипептида, включающего п молекул, ясно, что последний не может быть назван полимером первого, так как состав обоих веществ отличается НА п — 1 молекул воды. Полипептиды (и белки) — продукты поликонденсации а-аминокислот.— Прим. ред. [c.535]

    Две молекулы одной и той же или разных аминокислот могут ковалентно связываться друг с другом при помощи замещенной амидной связи (см. табл. 3-4), называемой йеядаыЭном связью, с образованием молекулы дипептида. Пептидная связь образуется путем отщепления компонентов молекулы воды от карбоксильной группы одной аминокислоты и а-аминогруппы другой аминокислоты под действием сильных конденсирующих агентов (рис. 5-18). Три аминокислоты могут соединиться аналогичным образом при помощи двух пептидных связей и образовать трипеп-тид точно так же можно получить тетрапептиды и пентапептиды. Если таким способом соединить большое число аминокислот, то возникает структура, называемая полипептидом. Пептиды различной длины образуются при частичном гидролизе очень длинных полипептидных цепей белков, которые могут содержать сотни аминокислотных звеньев. [c.127]


Смотреть страницы где упоминается термин Полипептиды, Белки, Вода: [c.360]    [c.948]    [c.739]    [c.21]    [c.253]    [c.515]    [c.238]    [c.167]    [c.224]    [c.451]    [c.529]    [c.167]    [c.270]    [c.360]    [c.733]    [c.740]    [c.21]    [c.253]    [c.77]    [c.519]    [c.191]    [c.212]   
Водородная связь (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

БЕЛКИ И ВОДА

Белки полипептиды

Полипептиды



© 2024 chem21.info Реклама на сайте