Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи между водой и белковыми молекулами

    Одним из наиболее важных типов слабых связей между биологически активными молекулами является водородная связь (гл. 2, разд. А.7). Мы уже говорили о том, какова роль диполь-дипольного взаимодействия этого типа для формирования структуры белков, углеводов и нуклеиновых кислот. Рассмотрим теперь значение водородных связей для биологического растворителя — воды. [c.246]


    Процесс завивки волос, хотя и не имеет никакого биологического значения, служит примером различных способов вмешательства во вторичную и третичную структуры. Водная завивка использует свойство воды пропитывать белковую ткань, которая размягчается за счет разрушения водородных связей между амидными группами в белке и образования новых водородных связей с молекулами воды. При высушивании вновь образуются водородные связи внутри белка, который за счет этого сохраняет задаваемую форму. При перманентной химической завивке сходный результат достигается другим путем. Сначала дисульфидные мостики белка восстанавливают до тиольных групп с помощью специальной жидкости, после чего проводят окисление с образованием в новом направлении дисульфидных связей, закрепляющих нужную форму волос. [c.303]

    Между отдельными группами вторичной структуры белков могут также образовываться внутримолекулярные водородные связи, в результате чего отдельные участки спирали сближаются, молекулы изгибаются и свертываются в клубок иди складываются - формируется третичная структура белка. В ее образовании большую роль играют также межмолекулярные взаимодействия полярных групп аминокислот, которые локализуются на внешней поверхности молекул и образуют водородные связи с водой. [c.271]

    Соединения водорода кислотного или потенциально кислотного характера, например вода Н2О, два атома водорода которой являются акцепторами электронов, с подходящими донорами электронов образуют водородные связи А — Н...В. Последние длиннее ковалентных, но несколько короче ван-дер-ваальсовских связей между молекулами А — Н и В. По своей природе они близки до-норно-акцепторным связям, усиленным электростатическим взаимодействием А —Н+...В , -де В может быть О, Ы, Р, а также С1, 5 и некоторые другие элементы. Очень важной особенностью водородной связи является то, что она всегда служит продолжением по прямой линии связи А — Н. Это обусловлено тем, что неподеленные электроны атома В находятся на вытянутых гибридных орбиталях зр, 5р2, зр , донорно-акцепторное взаимодействие устанавливается при условии копланарности связи А — Ни орбитальной оси неподеленных электронов В. Таким образом, водородная связь — это строго направленная связь. Энергия водородной связи невелика, обычно всего 3—7 ккал/моль. Но в твердых веществах, а также в растворах одновременно образуется множество водородных связен. Вот почему водородные связи прочно соединяют молекулы и вообще отдельные части структуры твердого вещества. Правда, даже при небольшом нагревании эти непрочные связи распадаются, что мы наблюдаем, например, при таянии льда или свертывании белка при нагревании. [c.89]


    Водородная связь, возникающая между двумя одинаковыми или различными. молекулами, называется межмолекулярной. Водородная связь между двумя группами одной и той же молекулы называется внутримолекулярной. Межмолекулярные водородные связи существуют в воде, спиртах, карбоновых кислотах, амидах, белках, полипептидах и в полиокси-органических и неорганических соединениях они могут приводить к образованию цепных, циклических или трехмерных конфигураций. [c.212]

    Каковы данные по состоянию воды в гидратной оболочке белка Основной вклад в энергию гидратации дают водородные связи между водой и полярными группами молекулы белка. Для образования гидратной оболочки глобулярных белков имеет значение пространственная доступность протон-донорных и протон-акцепторных центров для взаимодействия с молекулами воды. Оказалось, что гетероатомы нерегулярно расположены на поверхности глобулы, которая не может служить матрицей для кристаллизации воды. Так как число и размеры гидрофобных участков на поверхности также невелики, то шуба из уплотненных молекул воды вокруг глобулы не образуется, количество гидратационной воды, определенное различными методами, составляет 0,3-0,4 г НгО/г сухого белка, а обш ее содержание воды в кристаллах глобулярных белков не превышает, как правило, 0,45-0,60 г НгО/г сухого белка. Следовательно, количество свободной воды в белке невелико. Она, в частности, может заполнять внутренние полости , свободные от белкового веш ества, содержание воды в этих полостях также невелико (в лизоциме — 2, трипсине —12 молекул). Она может обмениваться с поверхностными водными слоями вследствие флуктуационных открытий внутренних полостей. [c.235]

    Крайний случай конформационно о изменения — денатурация белков, которая может быть вызвана нагреванием или обработкой различными реагентами, например сильными кислотами и основаниями, мочевиной, гуанидингидрохлоридом и додецилсульфатом натрия. Денатурация приводит к развертыванию молекулы белка, и он переходит в более или менее разупорядоченное состояние (здесь уже почти нет ни спиралей, ни (3-слоев, ни любых других типов регулярной укладки цепи). В денатурированном состоянии амидные группы пептидной цепи образуют водородные связи с окружающими их молекулами воды таких водородных связей значительно больше, чем внутримолекулярных. Специфическая биологическая активность белка при денатурации теряется, изменяются и физические свойства, например меняется константа седиментации, вязкость и поглощение света. Легкость, с которой происходит денатурация белка, и тот факт, что денатурация в принципе обратима, свидетельствуют о том, что различия в энергии между свернутыми конформациями и открытой конформацией статистического клубка невелики. [c.105]

    Водородные связи играют гораздо более важную роль для живых систем, чем можно предположить только по структуре воды. Они лежат в основе главного способа связывания белковых молекул, о котором будет рассказано в гл. 21. Без таких связей между атомами кислорода карбонильных групп и атомами водорода аминогрупп не могли бы надлежащим образом возникать спиральные полипептидные цепи, образующие молекулы белков. [c.621]

    Силы притяжения Лондона — Ван-дер-Вааль-са между гидрофобными участками белков и липопротеидов косвенно усиливаются соседством молекул воды. Тенденция молекул воды образовывать водородные связи друг с другом, а также с другими полярными группами, обусловливает возникновение некоторой упорядоченности структуры растворителя. Становлению этой завершенной системы взаимозамкнутых водородных связей у поверхности белка или липопротеида мешает лишь присутствие торчащих в растворитель углеводородных боковых цепей молекул липидов и аминокислот, не способных к образованию водородных связей. Наиболее стабильной будет такая конфигурация этой системы, когда неполярные участки могут избегнуть неподходящего для них поляризованного окружения, соединяясь с гидрофобными элементами других частей молекулы с помощью сил Лондона — Ван-дер-Ваальса. [c.49]

    Энергия различных водородных связей колеблется от 2 до 9 кал [100]. Поскольку молекула воды является типичным диполем, можно было ожидать, что водородные связи между группами NH и группами СО будут разрываться молекулами воды и что вода таким образом будет проникать в щели между сложенными в складки пептидными цепями [101]. Рентгенограммы кристаллических белков показали, однако, что пептидные цепи остаются в том же складчатом состоянии и в присутствии воды [2]. [c.138]

    Водородная связь возникает как между однородными, так и разнородными молекулами во всех агрегатных состояниях вещества. Энергия и прочность водородной связи измеряется величиной 5—8 ккал/моль (химическая связь 20—200 ккал/моль). Особенно заметно водородная связь проявляется между молекулами воды, спирта, карбоновых кислот, фенола и др. Основные вещества биологического процесса, такие, как белки, жиры, углеводы, образованы водородными связями. В гигантской белковой молекуле сотни водородных связей. [c.67]


    Распределение остатков внутри и снаружи молекулы согласуется с данными для других глобулярных белков. Гидрофобные остатки предпочтительнее располагаются внутри молекулы, а заряженные группы — снаружи [52]. Поскольку участок в р-форме находится главным образом внутри глобулы, в нем обнаружено много гидрофобных аминокислот, в том числе лейцина и фенилаланина. Всего в контакте с водой не принимают участия 78 остатков. Из них 22 могут образовывать водородную связь с атомами пептидной связи или близлежащих остатков, и, по-видимому, эта возможность почти во всех случаях реализуется [3, 52]. Два остатка триптофана (63 и 147) и один остаток тирозина (238) спрятаны внутри молекулы КПА. Остальные остатки этих аминокислот находятся в частичном контакте с растворителем. Существование водородной связи между ОН-группой Туг-238 и карбонильной группой Glu-270, вероятно, имеет некоторое значение для конформационного изменения с участием Glu-270 при связывании субстрата, как описано ниже. Четыре из десяти остатков пролина расположены у N-концов спиральных участков, а три —у концов наиболее длинных цепей в слое с р-структурой. Во внутренней части молекулы находятся три карбоксильные группы, принадлежащие остаткам 104, 108 и 292. Конечно, справедливость этого утверждения зависит от того, насколько правильно установлен тот факт, что они являются свободными и не участвуют в образовании амидных связей. Карбоксильная группа Glu-292 образует солевой мостик с Arg-272, так что ее заряд локально нейтрализован. Детальное изучение карт электронной плотности обнаружило неизвестный ранее факт внедрения в молекулу карбоксипептидазы десяти молекул воды [52]. [c.514]

    Подводя итог развитию представлений о стабильности белковой молекулы в 1950-1960-е годы, следует прежде всего отметить некоторый от юд от господствующей прежде концепции о пептидной водородной связи как решающего или даже единственного фактора, ответственного за структуру белка. Полученный в этот период большой экспериментальный материал по структуре глобулярных и фибриллярных белков и синтетических полипептидов не мог быть объяснен только на основе такой концепции. Опытные данные свидетельствовали о чрезвычайной чувствительности конформации пептидного остова к природе остатков, их последовательности, растворителю, температуре, значению pH, длине цепи и т.д. Более того, был получен целый ряд факторов, прямо противоречащих концепции об определяющей роли пептидных водородных связей. Например, обнаружено, что слабополярные органические растворители являются сильными денатурирующими агентами. Между тем, они значительно меньше ослабляют пептидную водородную связь, чем вода, и, следовательно, с позиции указанной концепции можно было бы ожидать увеличения стабильности нативной конформации, а не ее разрушения, как это имеет место. [c.242]

    Понятие гидрофобные силы используется при описании тенденции неполярных соединений, например углеводородов, переходить из водной фазы в органический растворитель. Этот эффект обусловлен не столько прямым взаимодействием между растворителем и растворенными молекулами, сколько перестройкой системы водородных связей в воде в результате присутствия гидрофобного соединения. Чтобы сохранить число водородных связей, каждая из которых имеет энергию 25 кДж-моль (6 ккал-моль ), молекулы воды располагаются вокруг неполярной молекулы. Поэтому гидрофобное соединение не вызывает больших изменений энтальпии растворителя. но приводит к уменьшению его энтропии из-за увеличения локальной упорядоченности. Вода стремится вновь увеличить свою энтропию, вследствие чего гидрофобная молекула вытесняется в гидрофобную область белка. [c.278]

    Такое распределение аминокислот объясняется в основном свойствами воды. Молекулы воды полярны и образуют водородные связи как между собой, так и с другими полярными молекулами (гидратация молекул). Неполярные молекулы не гидратируются. С другой стороны, внедрение неполярной молекулы в среду молекул воды требует разрыва водородных связей между молекулами воды. Поэтому возникают силы, стремящиеся уменьшить поверхность раздела между водной и неполярной фазой, что и приводит к объединению неполярных молекул между собой, а в случае белков — к выжиманию гидрофобных радикалов из водной среды внутрь глобулы. [c.33]

    В 1951 г. Полинг выдвинул в качестве модели пространственного строения белковых молекул так называемую а-спи-раль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность цилиндра. Соседние витки располагаются таким образом, что между группами ЫН и СО каждого третьего звена устанавливаются водородные связи (рис. 65). Один виток спирали содержит 3,6 аминокислотных остатка. Степень развития спирали зависит от природы белка и внешних условий. Так, например, поли-1-аланин начинает приобретать в чистой воде конформацию а-спирали, если в полипептидной цепи содержатся более 10 звеньев. В присутствии неорганических солей спираль лучше стабилизируется за счет гидрофобных взаимодействий. [c.636]

    Денатурация может происходить а) при повышении температуры б) при изменении pH среды в) в присутствии окислителей или восстановителей, которые разрушают дисульфидные связи г) при внесении детергентов, нарушающих гидрофобные взаимодействия между молекулами воды и белка д) при добавлении сильных акцепторов водородных связей, например, мочевины, и е) при физических воздействиях (например, под действием ультразвука). [c.412]

    По сравнению с другими белками сывороточные альбумины изучены довольно хорошо. По своему строению молекула нативного белка близка к эллипсоиду вращения и может быть охарактеризована как молекулярный кристалл со строгой конформационной структурой полипептидной спирали — цепи, свернутой определенным образом и поддерживаемой внутримолекулярными дисульфидными цисти-новыми мостиками, ионными и водородными связями между содержащимися в молекуле ионогенными группами, а также гидрофобными взаимодействиями между углеводородными фрагментами аминокислот. Следует отметить, что в структуре кристаллического белка существенную роль играют молекулы воды. Известно, например, что даже после тщательной низкотемпературной сушки вода составляет около трети массы кристаллического белка. В то же время факт отсутствия молекул воды внутри молекул глобулярных белков был доказан методом дифракции рентгеновских лучей [38, с. 176]. Это косвенно подтверждается и экспериментами по измерению скорости водородно-дейтериевого обмена, из которых следует, что лишь часть атомов водорода в группах —ОН, —NH2 и =КН обменивается практически мгновенно, в то время как на обмен остальных атомов требуется несколько часов. В связи с этим Ф. Гауровиц [38] и некоторые другие исследователи высказывают сомнения в пригодности этого метода для изучения конформации белков и вообще в существенной роли водородных связей, равно как и солевых мостиков, в поддержании нативной конфигурации цепи. [c.548]

    Как известно, молекулы белка построены из большого числа аминокислот. Поэтому при изучении структуры белка методом ИК-спектроскопии нельзя просто воспользоваться теми данными, которые были получены при исследовании полипептидов. В работе [137] изучали зависимость конформации от состава аминокислот для тех синтетических полипептидов, которые моделируют составные части белков. Было показано [1895, 1896], что при денатурировании дезоксирибонуклеиновых кислот в их спектрах исчезают полосы при 1645 и 1680 см и вместо них появляются полосы при 1660 и 1690 см- . Первые две полосы соответствуют регулярным водородным связям между звеньями пурина и пиримидина, которые придают прочность двойной спирали. Исследования проводили с использованием растворов в тяжелой воде. В работе [136] обсуждается необходимость спектроскопического изучения биополимеров, находящихся в Н2О и ВгО, поскольку эти жидкости являются их естественными растворителями. Там же рассмотрены соответствующие методики исследования. Изучены конформацион-ные изменения, происходящие при денатурации белков плазмы крови [1314, 1315J. Исследованы колебания пролинового кольца в пoли-L-пpoлинe [257, 259], который является составной частью многих белков. Был сделан вывод, что полосу при 1440 см можно использовать только для определения содержания остатков иминокислот в молекуле полипептида. [c.344]

    Как и подобает матрице, с которой снимаются копии, двойная спираль ДНК исключительно стабильна. Несмотря на большую длину, в природных условиях она расщепляется крайне редко. Такая стабильность структуры обусловлена несколькими факторами 1) наличием водородных связей между основаниями 2) вандерваальсовым притяжением плоских оснований, уложенных параллельно одно над другим 3) присутствием на поверхности молекулы многих атомов кислорода, отрицательно заряженных и нейтральных, способных к образованию водородных связей с водой или со специфическими белками, окружающими молекулу 4) способностью к образованию различного рода суперспиралей (см. ниже). [c.134]

    Молекулы воды образуют водородные связи не только друг с другом, но н с полярными группами растворенных соединений. В го же время любая группа, способная образовывать водородные связи с другой группой, может образовать водородные связи примерно такой же прочности и с молекулами воды. Именно поэтому водородные свяэи далеко не всегда способствуют ассоциации малых молекул в водных растворах. Если в неполярном растворителе какие-либо полярные молекулы прочно связываются друг с другом за счет водородных связей, это отнюдь не означает, что они будут ассоциировать и в воде. Что же в таком случае позволяет биохимикам утверждать, что водородные связи играют огромную роль в формировании структуры макромолекул и при взаимодействии биологически важных соединений Дело в том, что равновесие между состояниями, при которых пары взаимодействующих молекул в воде связаны друг с другом водородными связями или диссоциированы, легко смеш,ается в ту или другую сторону. Так, например, белки и нуклеиновые кислоты могут образовывать компактные структуры за счет внутримолекулярных водородных связей между определенными группами или же денатурировать вследствие образования водородных связей между данными группами и молекулами воды, причем разница в свободных энергиях этих двух состояний сравнительно невелика. [c.247]

    Пространственная структура зависит не от длины полипептидной цепи, а от последовательности аминоютслотных остатков, специфичной для каждого белка, а также от боковых радикалов, свойственных соответствующим аминокислотам. Пространственную трехмерную структуру или конформацию белковых макромолекул образуют в первую очередь водородные связи, а также гидрофобные взаимодействия между неполярными боковыми радикалами аминокислот. Водородные связи играют огромную роль в формировании и поддержании пространственной структуры белковой макромолекулы. Водородная связь образуется между двумя электроотрицательными атомами посредством протона водорода, ковалентно связанного с одним из этих атомов. Когда единственный электрон атома водорода участвует в образовании электронной пары, то протон притягивается соседним атомом, образуя водородную связь. Обязательным условием образования водородной связи является наличие хотя бы одной свободной пары электронов у электроотрицательного атома. Что касается гидрофобных взаимодействий, то они возникают в результате контакта между неполярными радикалами, неспособными разорвать водородные связи между молекулами воды, которая вытесняется на поверхность белковой глобулы. По мере синтеза белка неполярные химические группировки собираются внутри глобулы, а полярные вытесняются на ее поверхность. Таким образом, белковая молекула может быть нейтральной, заряженной положительно или же отрицательно в зависимости от pH растворителя и ионо-генных групп в белке. К слабым взаимодействиям относят также ионные связи и ван-дер-ваальсовы взаимодействия. Кроме того, конформация белков поддерживается ковалентными связями 8—8, образующимися между двумя остатками цистеина. В результате гидрофобных и гидрофильных взаимодействий молекула белка спонтанно принимает одну или несколько наиболее термодинами-чесю выгодных конформаций, причем, если в результате каких-либо внешних воздействий нативная конформация нарушается, возможно полное или почти полное ее восстановление. Впервые это показал К. Анфинсен на примере каталитически активного белка рибонуклеазы. Оказалось, что при воздействии мочевиной или р-меркаптоэтанолом происходит изменение ее конформации и, как следствие, резкое снижение каталитической активности. Удаление мочевины приводит к переходу конформации белка в исходное состояние, и каталитическая активность восстанавливается. [c.35]

    Не следует считать, что подобного рода свойства полимеров аналогичны свойствам соединений с низким молекулярным весом. Низкомолекулярные полисахариды при наличии большого числа гидроксильных групп хорошо растворимы в воде, в то время как целлюлоза совершенно нерастворима в ней, В растворе водородные связи между полимерными цепями непрерывно разрываются и снова образуются с участием молекул воды в условиях динамического равновесия. С повышением молекулярного веса полимера влияние термических возмущений на связи между полимерными цепями становится все менее заметным, а влияние их на связи полимера с растворителем остается еще значительным. Полинг с соавторами (Pauling, Согеу, Branson, 1951) считают водородную связь между двумя амидными группами более устойчивой по сравнению со связью между амидной группой и молекулой воды разность энергий этих двух связей они оценивают около 3 ккал моль . Поэтому можно ожидать, что структура белка, в которой все имеющиеся водородные связи образованы между амидными группами, будет наиболее энергетически устойчивой формой в растворе. [c.312]

    Различные полиоксипроизводные флавана (т. и. катехины) и флавона являются важнейшими структурными элементами молекулы конденсированных таннидов. При нагревании катехинов в воде, дан<е без доступа кислорода, они теряют способность кристаллизоваться и превращаются в неограниченно растворимое аморфное коричневое соединение, являющееся типичным таннидом. При более энергичном во,здействии на раствор, напр, при иагревании в присутствии разб. минеральной к-ты, эти танниды выпадают в осадок в виде флобафенов. Вещества типа катехинов имеют мол. вес ок. 300 мол. вес таннидов превышает 1000, а мол. вес флобафенов много выше. Основпой тип реакции таннидов с белком— образование прочных водородных связей между фенольными оксигруппами и функциональными группами белка, гл. обр. группами, содер кащими азот. [c.608]

    Проведенное рассмотрение относится к случаю, когда переход спираль — клубок происходит в инертном растворителе. Это условие выполняется редко, поскольку обычно наблюдается преимущественное взаимодействие растворителя либо со спиралью, либо с клубком. Вода легче ассоциируется с хаотическим клубком. Поэтому изучаемое равновесие относится к реакции обмена водородными связями между слабо гидратированной спиралью и значительно более гидратированным клубком. Образование водородных связей между пептидными группами белка и молекулами растворителя мешает образованию внутримолекулярных связей в белке, стабилизирующих спираль. Поэтому такие растворители, как мочевина, гуанидин, муравьиная, дихлоруксус-ная и трихлоруксусная кислоты, легко образующие водородные связи, способствуют образованию хаотического клубка, тогда как растворители, не склонные к образованию водородных связей, например этилендихлорид, хлороформ и 2-хлорэтанол, способствуют образованию водородных связей внутри цепей и между цепями. Если растворитель состоит из нескольких компонентов, то обратимые переходы спираль — клубок, имеющие резкий характер, могут происходить лишь в узком интервале концентраций этих компонентов. [c.285]

    Рентгенографический анализ помог установить расположение молекул воды в кристаллах различных белков [25]. При анализе рубредоксина получена особенно ясная картина, в которой было идентифицировано 127 молекул воды. Так как метод дифракции рентгеновских лучей дает картину, усредненную во времени, степень заселенности центров, удерживающих воду, варьирует от 1 до 0,3, а некоторые центры взаимно исключают друг друга. Имеется несколько плотных сетчатых структур, состоящих из атомов воды и белка, которые связаны системой водородных связей. В этой модели большая часть воды находится от белка на расстоянии длины водородных связей, образуемых атомами белка. Однако 25% воды находится на расстоянии 4 А или больше. При этом пик функции распределения соответствует расстоянию 4 или 4,5 А. Последняя величина равна расстоянию между ближайшими соседними атомами в воде или во льду. Вода, находящаяся на расстоянии 4 А или больше, не контактирует с атомами белка и представляет собой воду многослойного покрытия. Авторы полагают, что вода в полимолекулярных слоях не обнаруживается при измерениях термодинамических свойств. По-видимому, вода может быть локализована в результате образования молекулами, находящимися на поверхности белка, водородных связей и вег же будет проявлять термодинамические свойства, неотличимые от свойств растворителя в объеме (см. заключительную часть). [c.125]

    Все волокнообразующие белки, например фиброин шелка и коллаген, построены преимущественно из бифункциональных аминокислот это практически линейные, хорошо кристаллизующиеся полипептидные цепи (см. ниже). Они обладают высокой разрывной прочностью при сравнительно низком удлинении. Нерастворимость шелка обусловлена кристаллизацией фиброина после выделения раствора из желез шелковичного червя. Растворение белка, так же как и растворение целлюлозы, затрудняется вследствие образования большого числа водородных связей между пептидными группами (растворители для целлюлозы, см, стр. 142—143, пригодны также для шелка из этих растворов белок люжет быть высажен добавлением раствора соли). Коллаген, по-видимому, имеет слабо выраженную сетчатую структуру, которая разрушается при гидролизе (образование желатины). Молекулярный вес коллагена превышает 1-10 (установлено путем измерения вязкости в 0,1%-ном растворе моно-хлоруксусной кислоты в воде). Очень высокий молекулярный вес этих полимеров вполне вероятен, очевидно, этим объясняется неудача попыток Грассмэна обнаружить концевые группы.. Эластин представляет собой высокоэластичное вещество с изотропной структурой, которая при вытягивании превращается в анизотропную. Поэтому эластин при вытягивании ведет себя как натуральный каучук. Его молекула также состоит преимущественно из бифункциональных аминокислот, которые вследствие своего строения затрудняют кристаллизацию (валин, пролин, фенилаланин) наличие некоторого числа химических связей между макромолекулами обусловливает абсолютную нерастворимость эластина. Эластин чрезвычайно устойчив к гидролизу (устойчивее, чем коллаген). Роль, выполняемая эластином в животных организмах, находится в соответствии с его аминокислотным составом больпюе количество [c.101]

    Роль гидратных оболочек белков. Д/к. Бернал (1956) отмечает, что вода, занимающая пространство между белковыми молекулами, монмет передавать силы, действующие между частицами, даже если она находится в жидком состоянии. Отсюда делается вывод о роли воды как стабилизирующего молекулу фактора, скорее, механического свойства. Молекула НаО может насыщать избыточные положительные и отрицательные заряды па остатках аминокислот, что приводит к повышению молекулярной стабильности, устойчивости конфигураций аминокислот и предупреждает незапланированное скручивание цепей вследствие образования дополнительных внутримолекулярных водородных связей. Наконец, вода как растворитель обеспечивает транспорт ионов, а структурная организация воды в гидратированных белках по адсорбционной теории — ионную селективность клеток. [c.103]

    Стабилизсщия биоструктур. Гидрофобные взаимодействия играют существенную роль в формировании биоструктур, представляя собой один из основных факторов их стабилизации. В самом деле, эффект взаимодействия полярных групп белка с полярными молекулами воды связан с преобладанием полярных аминокислотных остатков на поверхности белковой глобулы. Однако наряду с этим возможно и взаимодействие посредством водородных связей полярных пептидных связей (NH---O ), принадлежащих разным участкам цепи внутри глобулы. Так как энергия водородных связей между пептидными связями в белке и между ними и водой примерно одинакова, это должно было бы приводить к рыхлой структуре макромолекулы в водном растворе. Однако реально существующая структура упорядочена и компактна и, как можно заключить, в основном определяется именно гидрофобными взаимодействиями. Отдельные аминокислотные остатки различаются по своим гидрофобным свойствам и могут вести себя как полярные или неполярные соединения. Термодинамическую оценку степени гидрофобности делают по величине изменения AG, приходящегося на боковую группу аминокислоты при ее переносе из этанола в воду (К.Танфорд). [c.233]

    Однако разрушение структуры воды нарушает систему водородных связей между молекулами воды. Вместо водородных связей углеводороды способны образовывать только более слабые ван-дер-ваальсовы связи с водой. Это приводит к увеличению значений AU > О, которые по абсолютной величине превышают отрицательный энтропийный вклад в изменение AF, т. е. AU > ГАб" . Поэтому в целом AF повышается, что энергетически невыгодно, и приводит к выталкиванию углеводородов из водной фазы. Гидрофобные взаимодействия в целом стабилизируют макромолекулы, хотя детальная картина взаимодействий с водой в пределах макромолекулы значительно сложнее. Сами молекулы воды распределены в глобуле неоднородно. Снаружи глобулы имеются локальные полярные центры гидратации, где молекулы воды сильнее связаны по сравнению с тонкой гидратной оболочкой на поверхности глобулы. В целом около поверхности белка может удерживаться до 2 - 3 слоев воды. Кроме того, имеется фракция прочно связанной воды, которая фиксируется на соответствующих малоподвижных элементах белковой структуры. [c.96]

    На поверхности белков имеется большое количество гидрофильных групп, которые обусловливают создание вокруг этих макроструктур почти сплошной водной оболочки. Гидрофобные радикалы аминокислот, образующие полипептидные цепи, обращены преимущественно внутрь структуры. Несмотря на это, некоторое количество воды может быть связано и внутри белковых макроструктур. Часть гидрофильных групп может содержаться и во внутренних отделах белковых макроструктур кроме того, некоторая часть воды может быть замкнута внутри этих структур в своеобразных ячейках , образованных гидратированными полипептид-нымн цепочками. И, наконец, дипольные молекулы воды могут попросту вклиниваться в водородные связи, не нарушая при этом их прочности. Принято различать интермицеллярную воду, находящуюся в свободном состоянии между отдельными белковыми макромолекулами, и интрамицеллярную воду, находящуюся внутри белковых глобул. Для устойчивости коллоидиых частиц имеет значение только вода, создающая внешнюю водную оболочку. Именно она и препятствует столкновению и объединению белковых макромолекул. [c.339]

    Поверхность фибриллярных и глобулярных белков имеет большое количество гидрофильных групп, создающих вокруг этих макроструктур почти сплошную водную оболочку. Гидрофобные радикалы аминокислот, образующих полипептидные цепи, обращены, видимо, преимущественно внутрь структуры. Тем не менее некоторые количества воды связаны (иммобилизованы) и внутри их 1) диполи воды могут вклиниваться в водородные связи, не нарушая их прочности 2) гидрофильные группы содержатся и во внутренних отделах макроструктур белков, где связывают определенное количество воды 3) некоторое количество воды замкнуто внутри белковых молекул в своеобразных сотах , образованных гидратированными полипептидными цепочками. Благодаря этому различают интрамицеллярную воду, находящуюся внутри белковых глобул, и интермицеллярную воду, находящуюся в свободном состоянии между ними. Для устойчивости коллоидных частиц имеет значение только вода, создающая внешнюю водную оболочку, препятствующую столкновению и объединению частиц. [c.180]


Смотреть страницы где упоминается термин Водородные связи между водой и белковыми молекулами: [c.271]    [c.52]    [c.720]    [c.52]    [c.86]    [c.274]    [c.75]    [c.164]    [c.48]    [c.361]    [c.58]    [c.361]    [c.27]    [c.37]    [c.61]    [c.204]   
Вода в полимерах (1984) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

БЕЛКИ И ВОДА

Водородная связь в воде

Водородные связи

Молекулы белка

Молекулы связь

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте