Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки внутренние молекулы воды

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.

    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]

    Насколько плотно упакованы остатки в белке Действительно ли он является почти сплошной структурой или же н нем есть пустые или заполненные растворителем области В третичной структуре белковых молекул иногда находили несколько больших полостей. В миоглобине есть область, хорошо соответствующая размерам атома ксенона это объясняет тот факт, что белок связывает один эквивалент этого инертного газа. Рибонуклеаза S имеет несколько полостей, которые, по-видимому, пусты. В лизоциме и а-химотрипсине имеется еще больше полостей, вероятно, заполненных растворителем. В кристаллической структуре а-химотрипсина было найдено 16 внутренних молекул воды . Однако визуально большинство белков выглядит довольно плотными структурами, как это видно на рис. 2.29 и 2.30. [c.109]


    МИД, возникают положительно заряженные поверхности, образованные катионными головками ПАВ. Под действием кулоновских сил притяжения ионы брома собираются вблизи четвертичных атомов азота. Вокруг мицеллы формируется так называемый слой Штерна, где и проявляются наиболее интересные особенности химии мицелл. Внутри мицелла содержит очень мало молекул воды и образует углеводородное ядро. Именно это различие в полярности между внутренней частью и поверхностью делает мицеллы сходными с глобулярными белками. Полярность мицеллярных поверхностей в общем случае близка к полярности белков и занимает промежуточное положение менаду водой и этанолом. Поскольку активный центр фермента, очевидно, вовсе не полярен, даже когда фермент растворим в воде, весьма полезно и необходимо изучение мицелл [154, 155]. [c.284]

    Детальный анализ структуры этих белков приводит к важным выводам [ПО—ИЗ]. Внутренность молекулы миоглобина заполнена плотно упакованными неполярными боковыми цепями аминокислотных остатков. То же справедливо для каждой из четырех цепей гемоглобина [114]. Число внутренних остатков равно 36 и включает два Гис, связанных с гемом. С учетом Гли, но не Про, общее число неполярных остатков в цепях гемоглобина лошади равно 72 (в каждой из двух а-цепей) и 78 (в каждой из двух р-цепей). Многие остатки Гли и Ала, будучи слабо гидрофобными, располагаются на поверхности молекулы. Объемистые неполярные боковые цепи, не находящиеся внутри глобулы, спрятаны в выемке вблизи поверхности, что сводит до минимума контакты с водой. Все боковые цепи, ионизуемые при нейтральном pH, находятся на поверхности глобулы. То же справедливо для других полярных боковых цепей, за исключением связанных с гемом Гис и Тре С4, которые соединены водородной связью [ПО]. В целом в миоглобине из 77 полярных групп (включая Три) только 5—6 расположено внутри глобулы, а остальные находятся на ее поверхности [П4]. Изучение гемоглобинов различных видов позвоночных (приматы, лошадь, свинья, кролик, лама, карп, минога) и миоглобинов кашалота и человека показало, что при замещениях 33 внутренних остатков в подавляющем большинстве случаев сохраняется их неполярный характер (табл. 4.12) [П1]. Эти остатки не контактируют с водой. Напротив, на поверхности глобулы имеется 10 инвариантно неполярных остатков. [c.232]

    Молекулы воды способствуют сохранению формы белковой молекулы. Молекулы воды изображены в виде больших шаров. Внутренняя спираль — полипептидная цепь молекулы белка с боковыми ответвлениями. [c.58]

    Ближе отвечает действительности представление, согласно которому [10] осмотическое давление определяется разницей в активности молекул воды но обе стороны мембраны. В то время как вода, в которую погружен осмометр, обладает полной активностью свободной воды, активность воды с внутренней стороны мембраны снижена гидратацией белка, а также иммобилизирующим действием нитевидных белковых молекул. С термодинамической точки зрения ток воды в направлении белкового раствора можно рассматривать как результат стремления энтропии к возрастанию. При высоком гидростатическом давлении межмолекулярные расстояния и энтропия уменьшаются [6]. [c.50]

    Распределение остатков внутри и снаружи молекулы согласуется с данными для других глобулярных белков. Гидрофобные остатки предпочтительнее располагаются внутри молекулы, а заряженные группы — снаружи [52]. Поскольку участок в р-форме находится главным образом внутри глобулы, в нем обнаружено много гидрофобных аминокислот, в том числе лейцина и фенилаланина. Всего в контакте с водой не принимают участия 78 остатков. Из них 22 могут образовывать водородную связь с атомами пептидной связи или близлежащих остатков, и, по-видимому, эта возможность почти во всех случаях реализуется [3, 52]. Два остатка триптофана (63 и 147) и один остаток тирозина (238) спрятаны внутри молекулы КПА. Остальные остатки этих аминокислот находятся в частичном контакте с растворителем. Существование водородной связи между ОН-группой Туг-238 и карбонильной группой Glu-270, вероятно, имеет некоторое значение для конформационного изменения с участием Glu-270 при связывании субстрата, как описано ниже. Четыре из десяти остатков пролина расположены у N-концов спиральных участков, а три —у концов наиболее длинных цепей в слое с р-структурой. Во внутренней части молекулы находятся три карбоксильные группы, принадлежащие остаткам 104, 108 и 292. Конечно, справедливость этого утверждения зависит от того, насколько правильно установлен тот факт, что они являются свободными и не участвуют в образовании амидных связей. Карбоксильная группа Glu-292 образует солевой мостик с Arg-272, так что ее заряд локально нейтрализован. Детальное изучение карт электронной плотности обнаружило неизвестный ранее факт внедрения в молекулу карбоксипептидазы десяти молекул воды [52]. [c.514]


    Каковы данные по состоянию воды в гидратной оболочке белка Основной вклад в энергию гидратации дают водородные связи между водой и полярными группами молекулы белка. Для образования гидратной оболочки глобулярных белков имеет значение пространственная доступность протон-донорных и протон-акцепторных центров для взаимодействия с молекулами воды. Оказалось, что гетероатомы нерегулярно расположены на поверхности глобулы, которая не может служить матрицей для кристаллизации воды. Так как число и размеры гидрофобных участков на поверхности также невелики, то шуба из уплотненных молекул воды вокруг глобулы не образуется, количество гидратационной воды, определенное различными методами, составляет 0,3-0,4 г НгО/г сухого белка, а обш ее содержание воды в кристаллах глобулярных белков не превышает, как правило, 0,45-0,60 г НгО/г сухого белка. Следовательно, количество свободной воды в белке невелико. Она, в частности, может заполнять внутренние полости , свободные от белкового веш ества, содержание воды в этих полостях также невелико (в лизоциме — 2, трипсине —12 молекул). Она может обмениваться с поверхностными водными слоями вследствие флуктуационных открытий внутренних полостей. [c.235]

    Небольшие изменения в количестве и состоянии относительно небольшой фракции молекул воды, образующих гидратный слой макромолекулы, приводят к резким изменениям термодинамических и релаксационных параметров всего раствора в целом. Быстрый обмен между протонами молекул воды вовлекает все фракции воды, включая молекулы, находящиеся во внутренних слоях белка. Все это делает систему биополимер — вода единой кооперативной системой, в которой любые изменения в состоянии как растворителя, так и макромолекулы носят взаимосвязанный и взаимообусловленный характер. [c.238]

    Важным структурным компонентом мембран является вода (см. 4 гл. IX). Особенности взаимодействия основных молекулярных компонентов мембран с водой определяют не только многие структурно-функциональные свойства мембран, но и являются решающими в процессе формирования самих мембран и стабилизации мембранных систем. Воду, входящую в состав мембран, подразделяют на связанную, свободную и захваченную. Наименьшей подвижностью отличается так называемая внутренняя связанная вода, присутствующая в виде одиночных молекул в углеводородной зоне мембран. Эта фракция воды, по данным ЯМР-спектроскопии, характеризуется временем корреляции Тс 10 с. Основная часть связанной воды— вода гидратных оболочек. Подвижность этой воды в мембранах выше, что приводит к меньшим значениям Тс (8 Ч-10) ° с. Гидратные оболочки образуются главным образом вокруг полярных частей молекул липидов и белков. Гидратные [c.7]

    Термодинамическое состояние аминокислотной последовательности определяется взаимодействиями атомов основной и боковой цепей в пределах каждого остатка и взаимодействиями остатков между собой и с молекулами окружения, прежде всего молекулами воды. Рассмотрим некоторые характерные для нативного состояния белковой молекулы особенности этих взаимодействий. Они были выяснены путем непосредственного наблюдения и соответствующей математической обработки моделей известных кристаллографических структур белков. Проведенный анализ позволил получить представление о характере распределения различных остатков на поверхности глобулы и в ее внутренней части, а также о плотности упаковки атомов и их доступности молекулам растворителя. [c.341]

    В целом вся полипептидная цепь образует компактную трехмерную структуру — третичную структуру В одном растворе молекула белка сворачивается так, чтобы неполярные, или гидрофобные, боковые цепи аминокислотных остатков находились во внутренней, малодоступной для молекул воды области, а полярные, или ионизированные, группы образовывали внешний контактирующий с водой слой. Такое расположение аминокислотных остатков полипептидной цепи является термодинамически наиболее выгодным состоянием, причем следует отметить, что это сворачивание пептидной цепи является высокоспецифичным и обусловлено первичной структурой молекулы. [c.18]

    На рис. 14.17 показан пример применения уравнения (14.64) к миоглобину. Видно, что величина полученная из нейтронного рассеяния, немного меньше соответствующей величины, полученной из рентгеновского рассеяния. Причина в том, что сахароза и глицерин, используемые для изменения рентгеновского контраста, не могут проникать внутрь белка. Но это возможно для молекул воды при нейтронном рассеянии, о чем свидетельствует небольшой водородно-дейтериевый обмен, наблюдаемый при варьировании отношения НзО/ОзО. Параметр а положителен для обоих методов. Это вызвано тем, что около поверхности белковой молекулы располагаются преимущественно гидрофильные группы. У этих групп и электронная плотность (а следовательно, рентгеновская рассеивающая плотность), и нейтронная рассеивающая плотность выше, чем у внутренних (гидрофобных) остатков. [c.442]

    Ионные группы располагаются главным образом на поверхности глобулярных белков и сольватированы посредством водородных связей или ион-дипольных взаимодействий с молекулами воды. Эти группы придают поверхности белка положительные или отрицательные заряды и тем самым обусловливают электростатические свойства белков в растворе. Иногда ионные группы присутствуют в неполярных внутренних областях белковых глобул и между ними возникают электростатические взаимодействия (солевые мостики). Считается, например, что в молекуле дезоксигемоглобина электростатические взаимодействия возникают между остатками аспарагиновой кислоты и аргинина, расположенными в двух различных а-цепях  [c.106]

    Примерно около /а части внутреннего объема клетки занята ДНК. Вокруг нее располагаются от 20 000 до 30 000 рибосом, которые состоят примерно нз 40% белка и 60% РНК. Остальное пространство в клетке занимает вода (дисперсионная среда) с растворенными в ней ферментами, органическими и неорганически- ми мономерными молекулами. [c.249]

    В силикагелях—материалах, доступных как образцу, так и противоиону, быстро устанавливается массопередача, что приводит к высокой эффективности колонки. Силикагели с привитыми группами делятся на микро- и макропористые в зависимости от диаметра внутренних пор. Микропористые материалы, имеющие небольшие по диаметру поры, позволяют молекулам растворителя, например воды, а также небольших ионов проникать в полимерную матрицу и задерживают большие молекулы. Большинство полимерных ионообменных силикагелей имеют микроструктуру. Полимерные смолы макропористого типа зачастую используют в жидкостной хроматографии низкого давления. Макропористые силикагели с привитыми ионообменными группами стали применять при разделении больших молекул, например белков. Однако устойчивость сорбента невелика из-за растворения его в водной подвижной фазе. Информация об ионообменниках привитых к силикагелю содержится в приложении 1.3. [c.111]

    Поверхность белка описывается огибающей вандерваальсовых радиусов атомов, находящихся на поверхности (обозначены точками). Внутренняя область белка заштрихована. Молекулы воды представляются в виде сфер радиусом 1,4 Д. Доступная воде поверхность> определяется как площадь, описываемая центром молекулы воды при ее скольжении по вандерваальсовой поверхности белка (или боковой цепи). Отметим, что в щелях существуют недоступные молекулам воды области белка (или боковой цепи). [c.23]

    Некоторые белки, разумеется, содержат внутреннюю воду, и такие молекулы воды, без сомнения, имеют значительно большую продолжительность пребывания на одном месте, чем молекулы вне поверхности белка. Наименьшая такая молекула — ингибитор трипсина поджелудочной железы, содержащий только 58 остатков в плотной компактной структуре, с четырьмя внутренними молекулами воды [28]. Эти молекулы являются важной частью белка, связывая водородными связями области, которые иначе имели бы ненасыщенные связи. Серин-протеазы —химотрипсин [29], трипсин [30] и эластаза [31] — имеют значительное число внутренних молекул воды 24—25 для трипсина и эластазы и находятся в основном в соответствующих местах этих подобных друг другу структур. [c.89]

    На поверхности белков имеется большое количество гидрофильных групп, которые обусловливают создание вокруг этих макроструктур почти сплошной водной оболочки. Гидрофобные радикалы аминокислот, образующие полипептидные цепи, обращены преимущественно внутрь структуры. Несмотря на это, некоторое количество воды может быть связано и внутри белковых макроструктур. Часть гидрофильных групп может содержаться и во внутренних отделах белковых макроструктур кроме того, некоторая часть воды может быть замкнута внутри этих структур в своеобразных ячейках , образованных гидратированными полипептид-нымн цепочками. И, наконец, дипольные молекулы воды могут попросту вклиниваться в водородные связи, не нарушая при этом их прочности. Принято различать интермицеллярную воду, находящуюся в свободном состоянии между отдельными белковыми макромолекулами, и интрамицеллярную воду, находящуюся внутри белковых глобул. Для устойчивости коллоидиых частиц имеет значение только вода, создающая внешнюю водную оболочку. Именно она и препятствует столкновению и объединению белковых макромолекул. [c.339]

    Величина ДОп еренос пропорциональна контактной поверх ности. Линейная зависимость между площ,адью доступной поверхности неполярной боковой цепи и величиной Д( перенос согласуется с гипотезой айсберга , поскольку можно ожидать, что число упорядоченных молекул воды пропорционально поверхности контакта. Как видно из рис. 1.8, на каждый диполь приходится уменьшение абсолютной величины ДСпереиос примерно на 1,5 ккал/моль. Однако эта величина была определена для переноса в этанол или диоксан, где водородные связи не столь прочны, как во внутренней части белка. В случае белка внутренние водородные связи частично компенсируют это уменьшение и значения для более полярных боковых цепей, например Thr и Туг, находятся, как видно из рис. 1.8, ближе к прямой неполярных остатков. Таким образом, выигрыш в ДСперенос примерно одинаков для полярных и неполярных групп, а величина ДСперенос приблизительно пропорциональна обш,ей площ,ади доступной (полярной и неполярной) поверхности с коэффициентом пропорциональности, равным 0,025 ккал/моль  [c.53]

    Водородные связи, которые обычно образуются в результате взаимодействия фенольного гидроксила тирозина (14) и карбоксила глутаминовой (24) или аспарагиновой кислоты, могут вносить свой вклад в стабилизацию третичной структуры. Ионные взаимодействия, например между р-карбоксильной группой аспарагиновой кислоты (18) и е-аминогруппой лизина (8), также, по-видимому, участвуют в стабилизации структуры. Ди-сульфидные связи могут быть образованы между боковыми цепями или группами К двух остатков цистеина (4, 10) естественно ожидать, что белковая структура, фиксированная такими связями, будет очень стабильна. Недавно было высказано предположение, согласно которому внутренняя часть белковой молекулы представляет собой каплю масла . Это дает основания утверждать, что гидрофобные взаимодействия могут быть важным фактором в определении третичной структуры. Неполярные группы К таких аминокислот, как фенилаланин (11), лейцин (13), триптофан (15), изолейцин (16) и валин (19), несовместимы с высокополярными молекулами воды. Рентгеноструктурное исследование подтвердило предположение, что эти группы стремятся разместиться во внутренней части пептидной цепи и исключить воду из своего непосредственного соседства. Стабилизация структуры белка, являющаяся результа-татом этого процесса, имеет энтропийную природу, и, хотя для белков оиа не может быть точпо рассчитана, ее можно оценить, измеряя термодинамические параметры переноса углеводородов из неполярных растворителей в воду. Например, переход [c.381]

    Было бы, конечно, заманчиво сделать заключение, что конфигурация цепи в свернутых белках также характеризуется структурой, в которой все водородные связи участвуют в образовании внутренних циклов в самой цепи. Такая интерпретация была предметом оживленной дискуссии. Рассмотрим свойства белков, которые отличают их от большинства изученных до настоящего времени синтетических полипептидов. Прежде всего отметим, что белки большей частью представляют собой продукты, водорастворимые или абсорбирующие воду. На этом основании мы вправе ожидать известного взаимодействия между молекулой воды и амидной группой. [c.312]

    С теоретической точки зрения работы Карпласа (2) и Гер-манса (11), а также более ранние исследования, проведенные Хэглером и Моултом [2] и Стиллинджером и Раманом [3], ясно свидетельствуют о том, что аналогичное упорядочение структуры может быть установлено и с применением функций стандартного потенциала. Хотя не было осуществлено еще модели-рования раствора белка с внутренними степенями свободы для молекул самого белка и для большого числа молекул воды, однако можно ожидать, что сходные структурные центры сохраняются и в растворе. [c.11]

    Равновесие 2К5Н- - /гОг = — ЗН + НгО сильно сдвинуто вправо, если раствор нейтрален или содержит неболь-щие количества щелочей в кислых растворах, наоборот, устойчивы сульфгидрильные группы 5Н. Связи — 5 —5 — могут быть внутримолекулярными или связывать мономерные единицы белка (например, сывороточный альбумин) в одну крупную частицу. В стабилизации формы молекулы играют роль и гидрофобные связи. Гидрофобные связи возникают за счет сил взаимодействия между углеводородными частями молекул белка. Углеводородные группы белковых частиц, находящихся в водной среде, ориентированы во внутренние зоны частицы, а гидрофильные группы (ОН, СООН) находятся на внещней стороне, которая обращена к воде. Вследствие этого внутри молекулы белка возникает углеводородное ядро, причем для того, чтобы его разрушить и перевести углеводородные группы в водную среду, надо затратить работу. Это и означает, что между углеводородными частями молекулы действуют силы притяжения. Кроме водородных, дисуль-фидных и гидрофобных связей, в поддержании формы молекулы белка принимают участие и другие факторы имеет значение возникновение солевых мостиков, действие сил Ван-дер-Ваальса особенно большое влияние оказывают молекулы воды. Сохранение определенной формы молекулы важно с биологической точки зрения. Оно обеспечивает, в частности, такое взаимное расположение групп атомов на поверхности молекулы, которое необходимо для проявления каталитической активности белка, его гормональных функций и т. д. Поэтому устойчивость глобул, так же как и многие особенности структур биологически активных молекул, не случайное свойство, а одно из средств стабилизации организма. [c.57]

    К внутреннему слою кутикулы примыкают оболочки клеток эпидермиса, состоящие в основном из полисахаридов (целлюлоза, гемицеллюлоза, пектин), лигнина и белка. В оболочках клеток имеется так называемое свободное пространство, образованное промежутками между фибриллами целлюлозы. Клеточную оболочку отделяет от цитоплазмы липопротеидная полупроницаемая мембрана — плазмалемма. Она представляет собой био-молекулярную пленку, состоящую из глобулярных липопротеиновых молекул. Расстояние между отдельными макромолекулами в плазмалемме не превышает 0,4 нм. Поэтому лишь молекулы воды (размером около 0,2 нм) могут беспрепятственно проникать в плазмалемму. Ей присущи все свойства полупроницаемой мембраны. Плазмалемма — последний барьер на пути проникновения ксенобиотика в протопласт. Элементарная мембрана состоит из двух слоев белковых веществ, между которыми заключен липидный слой, определяющий степень проницаемости [c.198]

    Часто обнаруживают, что большие ионы сильно взаимодействуют между собой в водном растворе, в то время как ионы меньших размеров с теми же заряженными группами взаимодействуют слабее или вообще не взаимодействуют. Взаимодействующие ионы можно разделить на два различных, но связанных между собой класса. К первому классу относят большие симметричные ионы, заряд которых экранирован от воды и которые взаимодействуют между собой сильнее, чем с молекулами воды, как это обсуждалось в предыдущей главе. Ко второму классу относят ионы, в которых заряженная группа присоединена к гидрофобной, и взаимодействие последней с макромолекулой или другими ионами обеспечивает их связывание. К этому классу относят красители и ионные детергенты, которые связываются с гидрофобными участками белков и могут вызывать их денатурацию, солюбилизируя внутренние гидрофобные группы белковой глобулы. Связывание с белками в ряду замещенных анионов соответствующей структуры возрастает с увеличением размера заместителей и почти не зависит от индукционных эффектов [3]. Также часто обнаруживают, что заряженные молекулы красителей, которые могут участвовать в некотором типе гидрофобного взаимодействия, связываются стехиометрически с противоположно заряженными группами белков, хотя небольшие ионы в тех же условиях практически не взаимодействуют с такими группами. [c.304]

    Не менее плодотворна нейтронная дифракция в изучении частично и полностью связанных молекул воды в пограничном слое и внутри белковой глобулы. Детальный анализ структуры водного окружения белка с помощью нейтронов впервые провели Б. Шенборн и Дж. Хенсон [574]. Они обнаружили значительное расхождение в наборах из 40 прочно связанных молекул воды с исследованным ими СО-мио-глобином и исследованным Т. Такано метмиоглобином методом рентгеноструктурного анализа [575]. Надежная фиксация положений атомов водорода при нейтронной дифракции делает этот метод уникальным в изучении внутренних вращений вокруг одинарных связей, особенно вращений метильных групп. Из карт нейтронной плотности трипсина следует, что, несмотря на плотную упаковку белковой макромолекулы, [c.166]

    Динамическая структура липидного бислоя наиболее полно изучена на примере искусственных бислойных везикул. Эти исследования показали, что молекула фосфолипида как целое может вращаться вокруг своей продольной оси и имеет достаточно высокую подвижность в слое с коэффициентами латеральной диффузии 10 —10 см /с. Полярные головки образуют на поверхности короткоживу-щие (10 —10 с) кластеры из 20—30 молекул, в результате чего могут возникать временные дефекты в структуре бислоя. Диффузия молекул воды через липидный бислой возможна при их попадании в эти свободные объемы между гидрофобными хвостами липидов. Молекулы фосфолипидов, находясь в бислое, могут осуществлять перескок из одного слоя в другой (флип—флоп). Однако в искусственных бислойных мембранах это происходит сравнительно редко из-за энергетической невыгодности переноса полярной головки через гидрофобный слой (Оеепеп, 1981). Только селективное взаимодействие с интефальными белками природных мембран может обеспечить быстрый переход фосфолипида из одного слоя в другой. Например, из печени быка был выделен белок, селективно взаимодействующий с ФХ и транспортирующий его с внешней стороны мембраны на внутреннюю, из искусственных везикул в плазматическую мембрану. После гидролиза этого комплекса был [c.110]

    На практике невозможно использовать выщеописанную подробную картину взаимодействия вода—биополимер для расчета гидродинамических свойств белков или нуклеиновых кислот. К тому же нет уверенности, что вклад в гидродинамические свойства обусловлен только прочно связанными молекулами воды. Для объяснения ряда гидродинамических свойств обычно принимают упрощенную модель гидратации. Согласно этой модели, считается связанной вся взаимодействующая с макромолекулой вода независимо от характера и силы связи. Предполагается, что вода заполняет внутреннее пространство, а также покрывает поверхность биополимера, сглаживая неровности. Допускается также, что неполнота.информации как о свойствах, так и о количестве связанной воды не имеет существенного значения. [c.190]

    РИС. 10.7. Связывание молекул воды с белком или нуклеиновой кислотой. А. Существует много классов молекул воды, характеризующихся различной прочностью связи с внешними и внутренними областями. Реальная поверхность макромолекулы имеет сложную структуру. Б. Идеализированная поверхность макромолекулы, удобная для иитерпретации гидродинамических данных. Поверхность макромолекулы сглажена, вместо отдельных молекул воды рассматривается тонкая водная пленка, расположенная по поверхности макромолекулы, а также вода, заполняющая внутренние полости. [c.190]

    Самым загадочным во всей последовательности рассматриваемых событий является вопрос о каналах , переносящих ионы через мембрану. Рассмотрим некоторые из существующих гипотез. По современным представлениям, биологическая мембрана представляет собой мозаичную белок-липидную структуру. В некоторых участках липидный бислой прерывается белками, насквозь пронизывающими всю мембрану. В иных участках белками занят только один (наружцы-й.или внутренний) сл.ой липида. Есть участки бислоя, полностью лишенные белков. Считается, что около 30—40% мембранных липидов связано с белками, а остальные молекулы находятся в с1зободном состоянии. И белки и липиды биологической мембраны могут совершать латеральное движение в плоскости мембраны, тем самым постоянно изменяя мозаичную картину. Предполагается, что каналами для ионов служат подвижные молекулы воды в неупорядоченной области липидов. Открывание этих каналов при, деполяризации мембраны или при взаимодействии нейромедиатора с рецептором объясняют переходом мембранных белков в более глобулярную структуру, вследствие чего липиды и вода теряют свою упорядоченность, нарушаются гидрофобные связи с белком и появляются подвижные молекулы воды в липидном бислое. С помощью т акой гипотезы очень трудно объяснить высокую селективность каналов , пх избирательность и в отношении ионов, и в отношений блокаторов. [c.166]

    На рис. 4.1 приведена структура белка цитохрома с, принцип построения которого типичен для многих детально изученных белков. Внутри глобулы белка имеется много водородных связей, а также алифатических и ароматических К-групп, между которыми возникают гидрофобные взаимодействия. Внутренние гидрофоб ные области молекулы обычно не содержат воды. В этих областях очень прочны электростатические взаимодействия, хотя они возникают намного реже, чем водородные связи или гидрофобные взаимодействия. Поверхность молекулы в основном гидрофильна, а многие полярные группы, включая положительно и отрицательно заряженные К-группы аминокислот, гидратированы и находятся в контакте с молекулами воды, окружающими белок. Таким образом, поверхность глобулы белка может быть нейтральной или обладать суммарным шоложительным или отрицательным зарядом в зависимости от pH растворителя, а также количества и природы ионогенных групп в белке. В настоящее время невозможно предсказать конформацию белка, исходя только из знания его аминокислотной последовательности. Однако следует отметить, что кон- [c.96]

    Для гидратации белка наибольшее значение имеют пептидные связи, за счет которых притягивается примерно /3 всей гидрата-ционной воды. В общем частицы гидрофильных коллоидов связывают значительные количества воды так, 1 г сухого крахмала при растворении связывает 0,18 г воды, 1 г яичного альбумина (белка) — 0,35 г воды, 1 г карбоксигемоглобина — 0,353 г воды. Связанная полярными группами вода приобретает новые качества, приближающие ее к твердому веществу ее молекулы имеют уплотненное расположение, свойства воды как растворителя понижены, она не замерзает при низких температурах и т. п. В свою очередь, гидратированное вещество также приобретает иные свойства повышается его устойчивость в растворе, уменьшается скорость диффузии и др. Вязкость и скорость образования внутренних структур в этих растворах значительно выше, чем в коллоидных. [c.174]

    Поверхность фибриллярных и глобулярных белков имеет большое количество гидрофильных групп, создающих вокруг этих макроструктур почти сплошную водную оболочку. Гидрофобные радикалы аминокислот, образующих полипептидные цепи, обращены, видимо, преимущественно внутрь структуры. Тем не менее некоторые количества воды связаны (иммобилизованы) и внутри их 1) диполи воды могут вклиниваться в водородные связи, не нарушая их прочности 2) гидрофильные группы содержатся и во внутренних отделах макроструктур белков, где связывают определенное количество воды 3) некоторое количество воды замкнуто внутри белковых молекул в своеобразных сотах , образованных гидратированными полипептидными цепочками. Благодаря этому различают интрамицеллярную воду, находящуюся внутри белковых глобул, и интермицеллярную воду, находящуюся в свободном состоянии между ними. Для устойчивости коллоидных частиц имеет значение только вода, создающая внешнюю водную оболочку, препятствующую столкновению и объединению частиц. [c.180]

    Перенос электронов по дыхательной цепи митохондрий завершает цитохромоксидаза (цитохром сЮг-оксидоредуктаза, комплекс IV), катализирующая реакцию восстановления молекулярного кислорода до воды. Донором электронов для фермента служит ферроцитохром с. Реакция специфически блокируется цианид- и азид-ионами, а также окисью углерода. Цитохромоксидаза прочно связана с внутренней мембраной митохондрий и является интегральным мембранным белком в раствор фермент может быть высвобожден лишь после растворения мембраны высокими концентрациями детергентов. В нативной мембране, а также в растворах неионных детергентов (тритон Х-100, твин-80, Emasol-1130) цитохромоксидаза присутствует в виде высокоактивного димера. Некоторые воздействия (рН>8,5, высокие концентрации солей и неионных детергентов) вызывают появление мономерных форм фермента. Каталитическая активность цитохромоксидазы зависит от степени агрегации молекулы фермента. [c.432]


Смотреть страницы где упоминается термин Белки внутренние молекулы воды: [c.311]    [c.36]    [c.52]    [c.52]    [c.175]    [c.88]    [c.219]    [c.62]    [c.475]    [c.204]    [c.475]   
Биофизическая химия Т.1 (1984) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

БЕЛКИ И ВОДА

Молекулы белка



© 2025 chem21.info Реклама на сайте