Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация взаимодействий вода белок

    Желание понять структурные, функциональные и динамические факторы, характеризующие поведение воды на поверхности белка и других поверхностях, а также их взаимосвязи стимулирует интерес исследователей к этой проблеме. Спектроскопия ядерного магнитного резонанса позволяет получить информацию как о структуре, так и о динамике процессов взаимодействия. В настоящей работе внимание сосредоточено на динамических аспектах взаимодействия воды с белком. Особенно подробно обсуждено явление перекрестной релаксации между протонами воды и белка и приведены новые доказательства существования этого процесса. Непонимание значения перекрестной релаксации приводит к неправильным заключениям относительно динамики воды на белковых поверхностях. [c.149]


    Временная зависимость намагничиваемости для системы протонов в гидратированном белке может быть эвристически описана двумя сопряженными уравнениями, содержащими три скорости релаксации —скорость спин-решеточной релаксации для воды в отсутствие взаимодействия протонов белка Я р — скорость спин-решеточной релаксации протонов белка в отсутствие релаксации, обусловленной присутствием протонов воды, и — скорость переноса намагничиваемости между двумя спиновыми системами. Тогда уравнения приобретают следующий вид  [c.153]

    По нашему мнению, продолжительность жизни молекулы воды в гидратационном слое по порядку величины составляет 10 с, т. е. примерно в 100 раз больше, чем время, требуемое для молекулы воды, чтобы разорвать и снова образовать несколько водородных связей, которые ограничивают ее движение в чистом растворителе. Тем не менее это время достаточно мало, чтобы его можно было рассматривать как характеристическое время для движения молекул жидкости. Разъяснение данной точки зрения и другие аспекты динамики взаимодействий вода — белок и белок — вода — белок в растворах белков и являются предметом настоящей статьи. Ниже представлены данные и выводы, следующие из результатов использования очень эффективного экспериментального метода, который, не будучи уже новым, применяется только в нашей и еще очень немногих лабораториях. Авторы измерили зависимость скорости магнитной спин-решеточной релаксации ядер растворителя (воды) в растворах белка от величины магнитного поля. Этому методу дали сокращенное название ЯМР-д (дисперсия ядерной магнитной релаксации). Опыты по ЯМР-д показали, что на быстрое вращательное броуновское движение молекул растворителя (воды) накладывается в результате функционирования механизма взаимодействия (еще не вполне понятого) очень небольшая по величине компонента, которая имитирует намного более медленное вращательное движение молекул белка [6, 7]. Кроме того, в экспериментах по ЯМР-д измеряются усредненные свойства всех молекул растворителя, так что время жизни молекул воды в гидратационном слое выступает в качестве естественного параметра во многих моделях, которые объясняют эти данные. Можно добавить, что данные по ЯМР-д прямо указывают на довольно быстрое ориентационное броуновское движение. Поэтому появляется возможность изучения микроскопической вязкости растворителя вблизи белковой молекулы в широком диапазоне значений pH, в присутствии различных буферов и т. д., что не всегда удается сделать с помощью других методов. [c.162]


    Присутствие в воде растворенного белка накладывает на быстрое броуновское движение растворителя-воды небольшую по величине, но измеримую компоненту, которая характеризует более медленное броуновское движение молекул белка. Это явление известно около 10 лет, и сначала его наблюдали как увеличение скорости магнитной релаксации протонов растворителя. С тех пор оно было изучено более глубоко путем исследования зависимости релаксации протонов и дейтронов растворителя от величины магнитного поля. Полученные данные несут необычайно богатую информацию о взаимодействиях вода— белок и белок—белок как в растворах, так и в суспензиях клеток. Однако природа лежащих в их основе взаимодействий растворитель—растворенное вещество остается весьма неясной. Для проверки концепции связанной воды, по которой ведется дискуссия, были проведены измерения на растворах белков в смешанном растворителе H2O/D2O. Данные этих измерений неожиданно указывают на взаимодействия между протонами белка и растворителя по механизму перекрестной релаксации. Эти последние результаты дают основание предположить, что интерпретация увеличивающейся информации о релаксационных измерениях образцов тканей нуждается в перепроверке, а возможно, и в новой интерпретации. [c.182]

    Д. Конденсация воды над наиболее слабо взаимодействующими участками поверхности (неполярными областями) приводит к образованию многослойного покрытия при степени гидратации 0,4 г воды/г белка. На поверхности белка вода должна располагаться особым локальным образом для достижения высокого значения степени покрытия в расчете на одну молекулу адсорбированной воды. Конденсация является главным этапом процесса гидратации. Это видно из результатов измерения теплоемкости, т. е. статических измерений, и является тем пунктом, с которого начинается изменение динамических свойств (диэлектрической релаксации, времени корреляции для спиновой метки, ферментативной активности). Подвижность системы белок — вода резко увеличивается после завершения формирования монослоя. [c.134]

    В настоящем исследовании предложен критический тест для оценки относительной важности перекрестной релаксации, в которую вовлечены протоны как воды, так и белка в системах гидратированных белков. Кроме того, с успехом продемонстрировано, что температурная зависимость релаксации как в воде, так и в белке определяется в основном движениями в водной фазе, а не движениями в твердой фазе типа вращений метильных групп. Хотя авторы не пытались дать детального ана- лиза, очевидно, что картина поведения воды на границе раздела с белком, согласующаяся с данными по ЯМР-релаксации, характеризуется быстрым и в некоторой степени анизотропным движением. Структурные модели взаимодействия белков с водой должны находиться в согласии с предположением, что вода сохраняет свойства жидкости на границе раздела фаз. Однако не менее важно отметить, что временная шкала, соответствующая описанным выше экспериментам, все же достаточно длинна по сравнению с временами корреляции вращения или временами диффузии, которые обычно характерны для воды в истинно жидком состоянии. [c.158]

    ЯМР-д на ядрах и 0. Исходя из самого общего рассмотрения механизмов магнитной релаксации [14], можно сделать вывод, что наблюдаемая релаксация протонов растворителя должна возникать в основном в результате магнитных биполярных взаимодействий данного протона либо с соседним протоном той же молекулы воды, либо с протонами гидратированного растворенного белка, либо вследствие проявления обоих эффектов. В первом случае каждая молекула воды (в среднем) ощущает вращательное движение белковых молекул в результате дальнодействующего процесса гидродинамического характера или в результате того, что часть времени она находится в состоянии какого-то связывания с растворенным белком и подвергается реориентации вместе с ним. Если имеет место только внутримолекулярное взаимодействие и результаты исследования ЯМР-д целиком обусловлены влиянием усредненной по времени кинетической предыстории молекул растворителя, то должны быть справедливы два следующих утверждения а) спектры Н-ЯМР-д в дейтерированном растворителе (которые легко получить) и спектры Ю (которые снять очень трудно) имитируют, если их нормализовать по отношению к скорости релаксации чистого растворителя, данные по ЯМР-д протонов б) величина вкладов Ли/) для протонов [уравнение [c.167]

    Выше представлено описание группы явлений, наблюдаемых при проведении экспериментов по ЯМР-д с растворами диамагнитных белков. Следует подчеркнуть, что полученные результаты отражают влияние растворенного белка и суспендированных клеток на усредненную динамическую предысторию молекул растворителя. Авторы формулируют на основании этих данных точку зрения на гидратацию и взаимодействия растворитель— белок и белок — белок, которые имеют гидродинамическую природу в масштабах, сравнимых с размером белковой молекулы, и кинетическую природу на уровне атомных размеров. Гидратация, в той степени, в которой она отождествляется с особым слоем воды на поверхности белка, относится к молекулам воды с определенной геометрией. Предполагается, что эта геометрия согласована с возможностями образования водородных связей с аминокислотными остатками, выходящими на поверхность макромолекулы, но эти молекулы воды могут быстро обмениваться с объемной водой. Любое замедление движения молекул растворителя обусловлено пространственными затруднениями, возникающими при их диффузии вблизи поверхности молекулы белка, особенно вблизи полярных групп. Шкала времени имеет порядок 10 с. Хотя это время соответствует в 100 раз более медленному движению, чем движение молекул растворителя, оно все же достаточно мало по сравнению с соответствующими временами релаксации во много раз больших по своим размерам молекул белка. Авторы не обнаружили никаких признаков существования особых связывающих центров со значениями времен обмена больше 10 9 с. [c.181]


    Как и при интерпретации влияния солей на водные растворы, основное внимание следует обращать на изменение свободной энергии системы при добавлении неполярных веществ к водным растворам интерпретация этого явления непосредственно с точки зрения структурной модели может оказаться ошибочной. Так, структурная модель дает приемлемое объяснение солюбилизации гидрофобных соединений под действием спиртов алкилзамещенных аминов и мочевин. Если одно растворенное вещество увеличивает структурированность раствора, можно было бы ожидать, что оно должно облегчать введение молекул другого подобного вещества. С другой стороны, структурирующая способность вещества совершенно необязательна для того, чтобы оно было в состоянии солюбилизировать гидрофобные соединения в воде. Уже отмечалось, что один из возможных механизмов денатурации белков и нуклеиновых кислот под действием мочевины заключается в стабилизации гидрофобных боковых цепей аминокислот и оснований нуклеиновых кислот при увеличении их контакта с растворителем, что проявляется в увеличении растворимости и уменьшении коэффициента активности этих групп в присутствии мочевины [31, 32, 35]. Спирты, ацетон и подобные им вещества разрушают гидрофобные связи и способствуют денатурации аналогичным образом. Однако мочевина, вероятно, не обладает структурирующим действием, по крайней мере в том смысле, как это понимается для неполярных молекул мочевина очень слабо влияет на большинство свойств воды и либо практически не изменяет структуру воды, либо, из данных по поглощению ультразвука, несколько ее разрушает [85]. Данные по энтальпии и теплоемкости растворов веществ с гидрофобными группами, а также исследования спектра ультразвуковой релаксации полиэтиленгликоля в воде и растворах мочевины указывают на то, что энергетически более благоприятное взаимодействие гидрофобных групп с мочевиной, чем с водой, связано с уменьшением структурированности воды вокруг гидрофобных групп [85, 86]. Таким образом, разрушение гидрофобных связей под действием мочевины или спирта нельзя объяснить одним и тем же механизмом с точки зрения структуры растворителя, хотя по свободной энергии эффекты соединений этих двух типов одинаковы. Возможно, что мочевина создает более благоприятное окружение для гидрофобных групп, находящихся в пустотах струк- [c.328]

    Метод спиновых меток оказался весьма эффективным для изучения структуры биологических мембран и конформационных явлений в мембранах [263, 264]. Весьма перспективно изучение ядерной релаксации в биополимерах, содержащих парамагнитную метку. Время релаксации зависит от взаимодействия спинов ядра и электрона и, следовательно, от расстояния между ними (Т пропорционально г ). Тем самым, можно получить информацию о геометрии молекулы и о ее движениях [265]. В работах [266] изучались спектры ЭПР и ЯМР алкогольдегидроге-назы, меченной аналогом никотинамидадениндинуклеотида. Оказалось, что метка конкурирует с НАД-Н в месте связывания ферментом, сильно иммобилизуется белком, резко изменяет время релаксации протонов воды, причем величина Т сильно зависит от концентрации спирта. Установлено место связывания спирта этим ферментом и оценены кинетические и геометрические характеристики системы. [c.346]

    Представления о механизме возникновения гидрофобных взаимодействий, развиваемые Шерагой, подтверждаются при наблюдении ряда свойств водных растворов глобулярных белков и ПАВ. Исследование указанных систем представляется чрезвычайно плодотворным для получения экспериментальных доказательств основных предпосылок теории гидрофобного взаимодействия. Безусловно, необходимы и прямые исследования структурирования воды вблизи углеводородных молекул. Некоторые попытки таких исследований были выполнены Песиком и Клиффордом [71] цтГ с помощью ЯМР-спектроскопии, однако пока не получено ясных результатов. Тем не менее Герцем и Цайдлером [72] показано, что время релаксации молекул воды вблизи углеводородных лю-лекул в 2 раза больше, чем у чистой воды. Создание количественной теории жид] ой воды и, следовательно, детального механизма гидрофобных взаимодействий возможно только при комплексном рассйтотренин данных, получаемых при исследованиях водных растворов как методом ЯМР, так и в результате разнообразных физико-химических исследований систем, свойства которых он-реде.ляются гидрофобными взаимодействиями. [c.17]

    В некоторых случаях ионы металла можно ввести в систему, которая первоначально не содержит таких катионов. Таким примером может служить гликогенфосфорилаза Ь, катализирующая превращение полисахарида гликогена в фосфорилированные моно-сахаридные единицы глюкозо-1-фосфата (Г-1-Ф). Путем измерения скорости протонной релаксации в присутствии Мп + и фермента было показано [П], что этот катион специфически связывается по определенным центрам фермента. Важная особенность этого фермента состоит в том, что он неактивен в отсутствие другого лиганда — аденозинмоно( сфата (АМФ), который усиливает связывание субстратов и повышает максимальную скорость действия фермента. Инозинмонофосфат (ИМФ) активирует фермент только путем повышения максимальной скорости, но не сродства к субстратам, и это различие в механизмах активации отражается на результатах измерения ускорения протонной релаксации в присутствии парамагнитных ионов. Введение АМФ в систему, содержащую Мп + и фосфорилазу, изменяет скорость релаксации протонов воды, тогда как добавление ИМФ не дает заметного эффекта. Отсюда делают вывод о конформационном переходе в белке, индуцированном связыванием АМФ, который сопровождается изменением т,-для взаимодействия Мп +—НгО. Аналогичные измерения в присутствии Г-1-Ф позволили предположить наличие ряда конформационных состояний фермента, исходя из данных по скорости релаксации протонов воды [И]. [c.387]

    В настоящее время опыт опережает теорию. Предложенные модельные механизмы авторы смогли изложить на количественном уровне лишь в одном случае, а именно для зависимости реориентационного времени релаксации белка от концентрации последнего. Тем не менее в этой работе удалось прояснить различие между макроскопической и микроскопической вязкостью, измерить взаимодействия белок — белок внутри клеток и продемонстрировать перенос намагничиваемости от протонов белка к протонам растворителя. Все это согласуется с динамикой взаимодействий вода — белок, которая и явилась предметом обсуждения. [c.181]

    Шульман н сотр. [ИЗ—115] исследовали активный центр карбоксипептидазы А путем измерения релаксации малых молекул, связанных с этим ферментом. Карбоксипептидаза является протео-литическим металлсодержащим ферментом, который катализирует расщепление С-концевой пептидной связи в пептидах и белках. Она имеет молекулярную массу 34600 и содержит 1 атом цинка на молекулу, который обусловливает каталитическую активность, но фермент остается активным при замене 20 + на ионы Мп + или Со2+ [116]. Кристаллическая структура фермента известна [117, 118]. С атомом металла координированы три белковых лиганда, и имеются свободные положения по меньшей мере еще для двух лигандов. Связывание растворителя (НгО) [ИЗ], ингибиторов [114] или фторид-иона [115] на активном центре Мп2+-фермента влияет на релаксацию связанных ядер не только потому, что белок имеет длинное время корреляции, но также вследствие наличия парамагнитного иона металла. Уширение резонансных сигналов растворителя было объяснено тем, что одна молекула воды связывается с ионом Мп2+. Как следует из измерения уширения пиков метильных или метиленовых протонов конкурирующих ингибиторов — индо-лилуксусной, г/7ег-бутилуксусной, бромуксусной и метоюсиуксус-ной кислот — и одновременного определения времен корреляции взаимодействия протонов ингибитора с металлом, релаксация определяется главным образом временем обмена комплекса белок — ингибитор. Используя известные константы Михаэлиса — Ментен и эти данные, можно определить константы скорости всех отдельных стадий реакции фермента с субстратом. [c.393]

    Вода играет важную роль в живых системах и в значительной степени определяет структуру и функции биологических полимеров, таких, как белки. Однако в этом сообщении мы сконцентрируем внимание в первую очередь не на том, как влияет вода на биополимеры, а на влиянии биополимеров на воду, которая с ними взаимодействует. Представляют интерес изменения структурных, энергетических и динамических свойств молекул воды. В результате изучения вращательной подвижности молекул воды на поверхности белков молекулы растворителя были поделены на три группы [1]. Первая группа включает быстро реориентируемые молекулы с временем вращательной релаксации (тг) не более 10 " с. В следующую группу входят частицы, имеющие время вращательной релаксации пример,но 10 с они предположительно идентифицируются как молекулы воды, связанные сильной связью с ионными остатками. Третья группа имеет Тг порядка 10- с эти молекулы растворителя считаются связанными с макромолекулами связями, запрещающими вращение примером могут служить четыре молекулы воды, распо- [c.31]

    Температурная зависимость спин-решеточной релаксации протонов белка в образце, содержащем 0,07 г ОгО/г лизоцима, приведена на рис. 8.3. Возможно, здесь имеет место небольшое диполь-дипольное взаимодействие, обусловленное наличием дейтерия, и некоторое изменение структуры белка, вызванное заменой воды на дейтерий. Однако эти данные, по-видимому, надо рассматривать как удовлетворительную оценку величины Ню для гидратированного лизоцима. В ранее опубликованной работе [23], посвященной исследованию сухого лизоцима, получены сходные кривые, имеющие мцнимум вблизи 180 К. На рис. 8.3 показана также зависимость величины Тх для протонов белка в гидратированном лизоциме (0,17 г НгО/г лизоцима). Как видно из этих данных, присутствие воды на белке приводит к существенному увеличению скорости релаксации. Следовательно, в гидратированном белке релаксация в основной массе протекает через водную фазу, а не через быстро вращающиеся метильные группы, по которым проходит в основном релаксация в системе сухого белка [23]. Не было сделано никакой попытки обнаружить релаксацию, описываемую с помощью двух экспонент измерялась только медленная компонента релаксационной кривой. [c.156]


Смотреть страницы где упоминается термин Релаксация взаимодействий вода белок: [c.294]   
Вода в полимерах (1984) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

БЕЛКИ И ВОДА



© 2025 chem21.info Реклама на сайте