Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соленоиды

    В установках плазменного нагрева (плазмотронах) температуру дуги повышают до 2-10 К и более, воздействуя на дугу параллельным потоком газа, закручиванием потока газа и обжатием магнитным полем соленоида [13]. В этом случае объемная плотность мощности в дуге достигает десятков кВт/см . Дуговые плазмотроны подразделяют на высоковольтные (2-6 кВ, 50-500 А) и низковольтные (100-800 В, 2-10, к А). Подавляющее число плазмотронов работает на постоянном [c.81]


    Индукционное нагревание слоя из металлических элементов соленоидом, окружающим рабочий участок. Тепловой поток определяется по нагреванию газа. Трудности осуществления этого метода связаны с необходимостью обеспечения равномерного тепловыделения в слое и определения средней температуры поверхности зерен, в которых циркулируют высокочастотные электрические токи. [c.144]

    На рис. 118 приведена принципиальная схема блокировки быстросъемной крышки. На крышке установлен упор 8 для конечного выключателя, расположенного на запорно-поворотном кольце байонетного затвора так, что при повороте кольца во время закрепления крышки и плотном перекрытии зубьев кольца зубьями крышки конечный выключатель нажимает на упор и замыкает электрическую цепь, в которую включены сигнальная лампа и соленоид 3. Лампа горит до тех пор, пока крышка закрыта. Соленоид смонтирован над рукояткой выпускного пробкового крана 5 [c.332]

    Если же крышка закреплена не полностью, то концевой выключатель не дойдет до упора и не сработает, цепь не замкнется, сигнальная лампа 7 не будет гореть и пробковый кран нельзя будет Открыть, так как запорная вилка соленоида не позволит повернуть рычаг крана. [c.333]

    Размыкание и замыкание электрической цепи регулируется специальным пневматическим клапаном (рис. 119). Резиновая диафрагма 1 предохраняет клапан со штоком 2 и пружиной 4 от влаги, содержащейся в сжатом воздухе. Давление в сосуде, если оно более 100 кПа, передается через диафрагму на клапан, который, приподнимаясь, перемещает шток с контактной планкой 3. Электрическая цепь разрывается и обесточивает соленоид. В этот момент сердечник со стержнями опускается и фиксирует рукоятку воздухораспределительной коробки в положении закрытой крышки. [c.333]

    Индукционная печь (рис. 5.4 ля с сливным носком, помещенного в индуктор в виде соленоида из медной трубки, охлаждаемой водой. Печь заключена в металлический кожух, закрываемый сверху сводом. Для слива металла печь может наклоняться в сторону сливного носка. Процесс плавки в индукционных печах протекает весьма быстро. В качестве металлической шихты в них используется металлический лом известного состава, который точно рассчитан по содержанию углерода, серы, фосфора и легирующих элементов.Так как в индукционных печах отсутствуют электроды, выплавляемая в них сталь не загрязняется углеродом и продуктами их обжига, угар легирующих элементов весьма мал. Поэтому индукционные печи применяют для выплавки только высококачественных сталей и сплавов сложного химического состава. Расход энергии [c.89]


    Электровакуумные приборы, провода, антенны, соленоиды [c.586]

    В безэлектродном разряде разрядная трубка помещается внутри соленоида, через который пропускается электрический ток. Разряд произойдет тогда, когда сила и частота тока достигнут достаточных значений. В безэлектродном разряде полимер осаждается на стенки ре- [c.77]

    Полуавтоматический захват с магнитным приводом имеет пружину, запорный штифт, соленоид и рукоятку для ручного оттягивания запорного штифта (пальца) при строповке. Расстроповка осуществляется включением тока в линии, питающей соленоид. Аналогично устроен полуавтоматический захват с пневмоприводом. [c.275]

    Преобразование заданных параметров в системе водопитателя контролируется датчиками и реле технологического контроля, а исполнительными механизмами являются электроприводы насосов и задвижек, соленоиды вентилей и т. п. Основная задача автоматики сводится в данном случае к пуску и отключению двигателей насосов или открыванию и закрыванию клапанов и задвижек. Для этого предусмотрена пуско-регулирующая аппаратура, работа которой задается автоматически в определенной последовательности. [c.156]

    В импульсном электродинамическом излучателе (рис. 3.18) при протекании импульса тока от генератора 1 через обмотку (соленоид) 2, выполненную в виде плоской спирали, создается импульсное магнитное поле, наводящее в проводящей пластине (мембране) 4 вихревые токи. Взаимодействие поля с токами приводит к отталкиванию пластины. Для устранения электрического пробоя пластина 4 отделена от соленоида 2 тонкой изолирующей прокладкой 3 и основание 5 выполнено из изолирующего материала. Контакт мембраны с жидкостью приводит при ее импульсном движении к генерации в ней ударной волны. [c.72]

    Аналогично в магнито-гидродинамическом сепараторе, основанном на разности магнитных проницаемостей (или поляризуемостей), можно выделять, например, газовые включения из парамагнитной среды. В работе [40] предложено в качестве такого МГД-сепаратора использовать соленоид. Для газовых включений радиусом около 5 мм в жидком кислороде дан расчет коэффициента сепарации в зависимости от скорости потока и магнитной индукции в интервале 0,1 Тл при скорости от 1 м/с и 1 Тл при скорости до 1 см/с. [c.139]

    Автоматическая головка Коллинза—Ленца с делением парового потока 1 — термометр со стандартным шлифом 2 — соленоид 3 — дефлегматор  [c.384]

    Модификация этой головки в имеет расходомер на Потоке орошения и автоматическое управление клапаном отбора с помощью соленоида. Расходомер орошения включает капилляр, рассчитанный на пропуск орошения в требуемых для данной колонны количествах и мерную трубку, высота уровня жидкости в которой определяет расход орошения. Предварительно расходомер тарируется. [c.99]

    Электрические индукционные печи (рис. 7-11). Нагревание в этих печах осуществляется индукционными токами. Обогреваемый аппарат 1 является сердечником соленоида 2, охватывающего аппарат по соленоиду пропускается переменный ток, при этом вокруг соленоида возникает переменное магнитное поле, которое индуцирует в стенках обогреваемого аппарата электродвижущую силу. Под действием возникающего вторичного тока нагреваются стенки аппарата. Соленоид выполняется из медной или алюминиевой проволоки, имеющей малое омическое сопротивление. [c.173]

    Магнитное поле может быть наведено пропусканием электрического тока непосредственно по деталям или через проводник, окружающий изделие или контактирующий с ним, либо с помощью соленоидов и магнитов. Наиболее рационально намагничивание с помощью соленоида или переносного электромагнита. [c.484]

    Смеситель высокого давления, в котором удобно приготовлять и хранить любые взрывчатые газовые смеси, представляет собой толстостенный стальной сосуд, способный выдержать давление, развивающееся при случайно произошедшем взрыве заключенной в него смеси. Смеситель снабжен электромагнитной мешалкой. Ее сердечник может совершать возвратно-поступательные движения внутри головки из немагнитной стали (она не препятствует проникновению силовых линий) при периодическом включении и выключении тока в соленоид, надетый на головку. [c.55]

    Поле соленоида и тороида. Сила Лоренца. Движение заряженных частиц в электрическом и магнитном полях. Ускорители заряженных частиц - их применение в производстве. [c.165]

    После падения первой капли неподвижный термоэлемент отключается я включаются подвижной термоэлемент (ПТЭ) 21 и электродвигатель 24 механизма задатчика скорости разгонки. Последний поднимает с постоянной скоростью подвижный термоэлемент предполагается, что скорость разгонки соответствует скорости подъема подвижного термоэлемента. В случае несовпадения этих скоростей срабатывает регулятор скорости разгонки (состоящий из электронного усилителя 20 и блока переключателя мощностей 18), изменяющий соответствующим образом нагрев колбы. В процессе разгонки механизм задатчика скорости разгонки производит замыкание специального микропереключателя, который включает соленоид отметки объемов (СОО) через каждые 10% изменения объема дистиллята. Включение соленоида (СОО) влечет за собой нанесение пером на картограмме очередной отметки объема дистиллята в виде вертикальной черточки. [c.180]


    Задача 5.1. Группа ученых под руководством П. Л. Капицы изучала поведение плазменного разрвда в гелии. Установка (точнее, интересующая нас часть установки) представляла собой бочку , положенную на бок. Внутри бочки находился газообразный гелий под давлением 3 атм. Под действием мощного электромагнитного излучения в гелии возникал плазменный шнуровой разряд, стягивающийся в сферический сгусток плазмы ( шаровую молнию ). Для удержания этого сгустка в центральной части бочки использовали соленоид, кольцом охватывающий бочку . В ходе опытов постелено наращивали мощность электромагнитного излучения. Плазма становилась все горячее и горячее. Но с повышением температуры уменьшалась плотность плазменного шара. Молния поднималась вверх. Мощности соленоидного кольца явно не хватало. Сотрудники Капицы предложили строить новую установку — с более сильной соленоидной системой. Но Петр Леонидович Капица нашел другое решение. Как Вы думаете, какое  [c.73]

    На трубопроводе сжатого воздуха между выпускным краном и сосудом имеется специальный пневматический клапан 4 с контактным устройством, размыкающим электрическую цепь. К этой цепр подключен соленоид 3, установленный на пульте управления над воздухораспределительной коробкой 1. С помощью распределительной коробки включаются пневмотолкатели поворота запорного кольца байонетного затвора. [c.333]

    Укрепленный на сердечнике соленоида стержень 2 препятствует повороту рукоятки подачи воздуха к пневмотолкателям поворотного механизма кольца. Крышку невозможно открыть до тех пор, пока сердечник не втянется в соленоид и не поднимет стержень, который выйдет из зацепления с рукояткой воздухораспределительной коробки и освободит ее. [c.333]

    I — соленоидиы вентиль 2 — защнтно-запальное устрой- , ство . 3 — штуцер для бегущего огня — трубопровод природного газа 5 — промежуточная труба б — трубо-провод природного газа с горелкой 7 — свеча печного газа. [c.229]

    В проточно-циркуляционных установках для прокачки реагиру-юш,ей смеси часто используют стеклянные плунжерные циркуляционные насосы. Поршень насоса приводится в возвратно-поступательное движение с помощью соленоида. Прерывистое магнитное поле соленоида создается посредством релейной схемы. Магнитные плунжерные насосы не всегда удобны в применении, в частности при сильно экзотермических реакциях, когда требуется создавать большую циркуляцию газа, чтобы избежать неоднородного температурного поля в реакторе. Поэтому наряду с этими насосами применяют и другие конструкции, например, сильфонные или диафраг-менпые насосы, приводимые в движение от электродвигателя [14,151. Весьма целесообразно включать в схему центробежные газодувки высокой производительности. Здесь, однако, надо исключить утечки газа через сальники на оси ротора насоса. [c.410]

    На рис. Х.12 приведена очень удобная конструкция металлической ампулы емкостью 30 мл с магнитной возвратно-по-ступательной мешалкой, в которой исключены холодные выступающие части запорных приспособлений и связанные с этим ошибки из-за наличия мертвого объема с пониженной температурой [22]. В верхней части ампулы находится уплотняющая головка 2 с размещенной в ней частью вентиля с запорной иглой Другая часть вентиля расположена в специальном выносном устройстве, служащем для заполнения ампулы газом до давления опыта. При необходимости работать с постоянной подачей газа головку с иглой замепют на головку с приваренным капилляром. Мешалка состоит из плунжера 5, выполненного из железа Армко и, если нужно, запущенного коррозионностойким покрытием, и лопастей 6. Всю ампулу вставляют в катушку соленоида, помещенную в жидкость термостата. При числе переключений соленоида 2—3 в 1 сек обеспечивается весьма интенсивное перемешивание содержимого ампулы. [c.416]

    Источниками электростатического поля в окружающем пространстве служат тела - проводники (электроды) или диэлектрики различной геометрической конфигурации, несущие электрический заряд. Источниками магнитного поля являются намагниченные тела или системы проводников с токами (катушки, соленоиды), р асполагаемые на маг-нитопроводах. [c.75]

    В тлеющем разряде также могут протекать разнообразные химические реакции. В 1920 г. американский физик Р. Вуд получил с помощью тлеющего разряда водород. В тлеющем разряде можно синтезировать различные вещества (Н2О2, О3, N0). Предложено использовать тлеющий разряд для получения напыленных полимерных мембран [8]. Плазменной полимеризации подвергаются различные органические соединения. Используется как электродная, так и безэлектродная форма разряда (разряд, протекающий в стеклянной трубке, помещенной внутри соленоида, питаемого от ВЧ-генератора). Образующийся полимер осаждается на пористой подложке в зоне тлеющего разряда. [c.175]

    Основной стандарт ASTM Ректификация сьфой нефти в колонне с 15-ю теоретическими тарелками (Д-2892 - 73) является аналогом отечественного ГОСТ 11011 - 64, хотя существенно отличается о него в аппаратурном отношении. В качестве ректификационной установки стандарт предусматривает использование одной из трех установок, выпускаемых различными фирмами и выполненных из термостойкого стекла. Схема одной из них показана на рис. 5.5. Колонна диаметром 50 мм и высотой не более 914 мм заполнена насадкой и помещена в обогреваемую снаружи вакуумную рубашку. Эффективность колонны при полном возврате флегмы - 14-17 теоретических тарелок. Стеклянный куб емкостью 5-6 л помещен в эластичный нагреватель и расположен над магнитной мешалкой. Конденсационная гоповка с двойным контуром охлаждения. Отбор фракций регулируют частотой открытия клапана, управляемого соленоидом. Для улавпивания газов j -С4 за головкой подключена ловушка, охлаждаемая сухим льдом, а между этой ловушкой и кубом расположен дифференциальный манометр. [c.85]

    I - насадочная колонна 2 - вакуумная рубашка 3 - обогреваемый кожух 4 - клапан 5 - соленоид 6 - гоповка 7 - термопары 8 - трубка для отбора фракций 9 - приемник 4ракций 10 - куб  [c.86]

    Наиболее простой по конструкции является головка с делением сконденсированного потока флегмы с помощью клапана или крана (см. рис. 5.7). Управление иглой клапана осуществляется вручную как показано на рис. 5.2 или с помощью электромагнита (соленоида). В такой головке с выносным хоподильншсом тубус и паровой патрубок 7 являются дополнительными поверхностями конденсации и источниками неконтролируемого потока орошения. [c.99]

    Автоклавы Вишневского и микроавтоклавы представляют собою жидкостные бессальниксвые реакторы высокого давления с внешним магнитным приводом. В первых из них создается вращающее магнитное поле, приводящее в движение установленный внутри автоклава винтовой циркуляционный насос, во-вторых устанавливается дисковая возвратно-поступательная мешалка, приводимая в движение внешним соленоидом. Расчет активности катализатора при работе с такими аппаратами проводится аналогично расчету для статических циркуляционных установок. [c.363]

    Первая капля дистиллята, характеризующая начало кипения, падает на неподвижный термоэлемент (НТЭ) 19, представляющий собой термопару ХК) с приваренным к горячему спаю нихромовым подогревателем. Эта капля охлаждает горячий спай термоэлемента, в результате чего происходят шгновенное изменение э. д. с. и переключение элементов схемы выключается соленоид отметки (СОО), расположенный на каретке пера регистратора ПС1-01-АФР, перо опускается на картограмму и фиксирует начало кипения продукта. [c.180]

    Протоны защищены от действия внешнего магнитного ноля окружающими электронами (эффект электронного экранирования). Поясним эффект электронного экранирования на примере молекулы бензола (рис. 27). Если молекула бензола находится в магнитном поле, то электроны бензольного ядра начинают вращаться вокруг силовых линий магнитного поля, образуя как бы круговой ток (подобие соленоида) внутри молекулы возникает свое магнитное поле, противоположно направлепное внешнему Таким образе . [c.40]

    В индукционных печах тепло выделяется за счет возникновения в толще шихты индукционных токов. В основе действия индукционных печей лежит трансформаторный принцип пехю-дачи энергии от первичной цепи к вторичной. При этом первичной обмоткой — индуктором является соленоид, а вторичной — металлическая шихта. [c.87]


Смотреть страницы где упоминается термин Соленоиды: [c.332]    [c.333]    [c.334]    [c.77]    [c.68]    [c.68]    [c.416]    [c.100]    [c.384]    [c.385]    [c.386]    [c.99]    [c.173]    [c.95]    [c.110]    [c.89]    [c.94]   
Общая органическая химия Т.10 (1986) -- [ c.52 , c.53 ]

Физика моря Изд.4 (1968) -- [ c.2 , c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Двухходовой кран, управляемый соленоидом

Кацнельсона формула расчета тяговой силы соленоида

Криостаты металлические сверхпроводящих соленоидов

Магнитные поля соленоидов

Магниты со сверхпроводящими соленоидами

Намагничивание деталей с применением соленоидов и гибких кабелей

Определение напряженности поля в соленоидах и катушках

Определение режима намагничивания деталей в соленоидах с учетом удлинения детали согласно нормам

Палмер, Д. К. Дэвис, У. Ван Уиллис. Дозатор на соленоидах для газового хроматографа

Сверхпроводящие соленоиды

Соленоид расчет тяговой силы

Соленоид схема питания

Соленоид укладка нуклеосом

Соленоиды ВДП для плавки слитков

Соленоиды ВДП с отъемным поддоном кристаллизатора

Тяговая сила соленоида, расче



© 2025 chem21.info Реклама на сайте