Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материалы для реакторов высокого давления

    В настоящее время в мировой промышленности существуют четыре метода производства полиэтилена. Один метод при высоком давлении и три — при низком давлении. Полиэтилен высокого давления (ПЭВД) имеет целый ряд преимуществ по применению в тех областях, где требуется высокая прозрачность и чистота материала, поскольку не содержит остатков катализатора. Здесь рассматривается один из возможных способов получения ПЭВД. Одним из основных элементов технологической схемы непрерывной полимеризации этилена при высоком давлении является химический реактор. Подлежащий полимеризации газ после предварительной обработки поступает в химический реактор с мешалкой при температуре 30-50 °С. В качестве инициатора полимеризации этилена при высоком давлении используют молекулярный кислород. Процесс полимеризации очень чувствителен к концентрации кислорода, поэтому дозирование кислорода должно быть стабильным. В результате реакции выделяется большое количество теплоты и в реакторе устанавливается относительно высокая температура, которую, ввиду опасности взрывного разложения, следует ограничить максимальной величиной в 280 С. Поэтому степень превращения этилена в реакторе около 20 %. Время пребывания tau реакционной смеси колеблется в пределах 20-300 с. [c.189]


    Поскольку в большинстве аппаратов, оборудованных экранированным электродвигателем, наряду с высоким давлением используется повышенная температура (порядка 450° С), возникла необходимость в тепловой изоляции экранированного двигателя от реакционного аппарата. Тепловая изоляция достигается путем применения специальной горловины из нетеплопроводного материала, помещаемой между двигателем и реактором. Конструкция горловины показана на рис. 6. [c.32]

    Материал Б-850 предназначен также для изготовления эластичных термостойких высокогерметичных прокладочно-уплотнительных и конструкционных изделий, для изготовления эластичных термостойких прокладок, уплотнений реакторов, фланцевых соединений, трубо- и газопроводов, баллонов, работающих под высоким давлением, вакуум-формовочных приспособлений - пресс-камер, вакуум-формовочных мешков, диафрагм, мембран для высокотемпературной опрессовки и отверждения теплозащитных покрытий и композиционных материалов -стекло-, угле-, металлопластиков и т.п., в энергетике, авиастроении и др. отраслях промышленности, а также для прокладочно-уплотнительных изделий в газовой промышленности и всех др. отраслях, где имеются тепловые процессы при температурах до 375°С и давлениях до 350 атм. [c.47]

    При проведении подобного процесса возникают серьезные теоретические проблемы. Под действием свободно-радикального катализатора, аналогичного применяемому в производстве полиэтилена, должен образовываться атактический полипропилен, обладающий неудовлетворительными свойствами. Под действием же металлических катализаторов, подобных применяемым при полимеризации полипропилена в растворителе, в реакторах под высоким давлением может образовываться полипропилен, обладающий ценными свойствами. Это позволит сохранить преимущество высокой производительности реакторов высокого давления, однако встает проблема удаления остатков катализатора. Подобное удаление может оказаться значительно труднее из полимера, получаемого в реакторах высокого давления в виде больших кусков, чем из измельченного материала, получаемого по существующим методам производства. [c.222]

    Случаи утечки большого количества этилена из системы высокого давления с последующим его воспламенением, сопровождаемым пожарами, встречались на практике неоднократно. Утечки были вызваны разуплотнением нижнего волнового кольца реактора, а также разуплотнением фланцевых соединений блока клапанов отделителя высокого давления, отрывом трубки сальника в месте сварки его со штуцером компрессора высокого давления разрывом трубопровода подачи кислорода в реактор (скрытые дефекты материала трубопровода), разрывом трубопровода возвратного газа (местное термическое разложение этилена в трубопроводе) и другими причинами. Основной причиной большинства аварий является повреждение оборудования, работающего под высоким давлением. Поэтому серьезное внимание должно быть уделено упрочнению трубопроводов, реакторов, уплотнению мест соединений труб высокого давления и ввода термопар, размещению датчиков давления, созданию коррозионностойкого оборудования и др. [c.107]


    В основе импедансного метода лежит измерение мех. сопротивления (импеданса) изделий преобразователем, сканирующим пов-сть и возбуждающим в изделии упругие колебания звуковой частоты, этим методом выявляют дефекты (площадью 15 мм ) клеевых, паяных и др. соединений, между тонкой обшивкой и элементами жесткости или заполнителями в многослойных конструкциях. Анализом спектра колебаний, возбужденных в изделии ударом, обнаруживают зоны нарушения соединений между элементами в многослойных клееных конструкциях значит, толщины (метод своб. колебаний). Акустико-эмиссионный метод, основанный на контроле характеристик упругих волн, к-рые возникают в результате локальной перестройки структуры материала при образовании и развитии дефектов, позволяет определять их координаты, параметры и скорость роста, а также пластич. деформацию материала, используют для диагностики сосудов высокого давления, корпусов атомных реакторов, трубопроводов и т.д. [c.29]

    Ультразвуковая голография стала одним из важных методов неразрушающего контроля материалов. Она используется для анализа дефектов материала, обычно найденных другими способами, т. е. для определения типа дефекта и его геометрии. Такой метод применяется, например, на атомных электростанциях для исследования дефектов сварных швов корпусов высокого давления реакторов (рис. 13.20 и 13.21 [1235, 1360]). [c.322]

    В контактных аппаратах (реакторах) нередко приходится направлять по трубам катализатор из аппарата с меньшим давлением в аппарат с более высоким давлением. В этом случае вес столба сыпучего материала должен преодолеть разность давлений между аппаратами. В противном случае сыпучий материал не будет высыпаться из трубы и зависнет в пей. Следовательно, при наличии разности давлений между верхним и нижним концами катализаторопро-вода длина его зависит от перепада давления и от насыпной плотности материала. [c.67]

    Можно применять обычные периодические процессы коксования, но более перспективен непрерывный процесс, при котором частицы кокса нагреваются и циркулируют в виде взвеси в водяном паре высокого давления. Битум контактируется с циркулирующим слоем горячего кокса, вследствие чего достигается равномерное распределение нефти на зернах кокса. Часть битума испаряется за счет тепла кокса, остальное количество в жидком состоянии обволакивает зерна кокса. Скорость частиц кокса в этой стадии цикла невелика, и общая продолжительность пребывания материала в реакторе достигает 30 мин. это обеспечивает коксование нефти и сушку зерен кокса. Затем следует отпарная зона, где происходит удаление остаточных углеводородов в атмосфере водяного [c.99]

    Ведь должен же я когда-нибудь это сказать, тем более что нашему молодому гостю интересно знать, с каких пор металлургия высоких давлений вошла в нашу жизнь. Все началось с того, что люди осуществили свою давнюю мечту, начав производство искусственных алмазов. Мягкий графит и самый твердый на земле материал — алмаз имеют один и тот же химический состав. Это углерод, различно лишь его фазовое состояние. Когда это было установлено, ученые приступили к поиску путей получения алмазов синтетическим путем. Среди ученых встречались и шарлатаны, напоминавшие алхимиков средневековья, но в конце концов положительный результат был достигнут. При сверхвысоких давлениях вначале удавалось получать лишь алмазную крошку, и тем не менее это был громадный успех. Вскоре научились получать более крупные частицы алмаза. Их использовали для обработки сверхтвердых материалов. Сегодня уже не является проблемой получение искусственных алмазов, в несколько раз превосходящих по размеру наиболее знаменитые природные. Во время обеденного перерыва Вы сможете в нашем реакторе сверхвысоких давлений синтезировать себе на память кохинор. [c.194]

    Следует отметить, что техническое значение радиационного охрупчивания для расчета энергетических реакторов небольшое. Изменения свойств, обнаруженные при контроле, в основном незначительные, потому что интегральные дозы нейтронов для сосудов давления были небольшими. Вероятно, влиянием дозы нейтронов порядка нейтр./см (быстрые нейтроны) или менее можно пренебречь. Обеспечение необходимой защиты стенки сосуда давления в активной зоне реактора, устранение местных концентраций напряжения в зонах воздействия большого потока нейтронов, контроль материала, поврежденного радиацией, обеспечение надлежащего дозиметрического контроля, использование материала с высокой исходной вязкостью разрушения сделают маловероятным радиационное охрупчивание сосудов давления ядерных энергетических реакторов. [c.421]

    Обозначение базовых марок состоит из названия материала полиэтилен и восьми цифр. Первая цифра 1 — указывает на то, что процесс полимеризации этилена протекает при высоком давлении в трубчатых реакторах и реакторах с перемешивающим устройством с применением инициаторов радикального типа. Две следующие цифры обозначают порядковый номер базовой марки. Четвертая цифра указывает степень гомогенизации. Пятая цифра условно определяет группу плотности марки полиэтилена 1—0,900—0,909 г см , 2—0,910—0,919 г см -, 3-—0,920—0,929 г см 4—0,930—0,939 г см . Следующие три цифры, написанные через тире, указывают десятикратное значение индекса расплава. После обозначения марки полиэтилена указывается сорт. [c.262]


    Конструкции корпуса и других элементов реактора существенно зависят от давления, при котором протекает реакция. Реакторы низкого давления (контактные аппараты, конвертеры) имеют обычно сравнительно тонкостенный сварной цилиндрический корпус, непосредственно к которому крепят решетчатые полки с катализатором. Штуцера для подвода и отвода реагентов обычно приварены к боковой стенке корпуса, В качестве корпусов реакторов высокого давления (10—100 МПа) применяют цельнокованые, ковано-сварные или многослойные сварные цилиндрические толстостенные сосуды (из стали 22ХЗМ), закрытые массивными плоскими крышками (рис, 4,40), Реагенты подводят и отводят через крышки боковые штуцера применяют редко. Для герметизации соединения корпуса и крышки в последнее время используют преимущественно двухконусный самоуплотняющийся затвор, Такие реакторы применяют в основном для синтеза аммиака и метанола (колонны синтеза). Реакция происходит в катализаторной коробке (насадке колонны), закрепленной с зазором относительно корпуса, В зазоре циркулирует холодный синтез-газ, охлаждающий корпус и стенку катализаторной коробки и этим защищающий их от перегрева и соответствующей потери прочности материала стенки, а также от температурных напряжений. Создание крупных колонн синтеза и агрегатов большой единичной мощности обусловлено развитием сварочной техники, в частности электрошлаковой сварки, позволяющей сваривать толстые детали. [c.286]

    Вид пирограммы зависит также от давления газа-носителя и его природы. Пиролиз чаш е всего проводится в инертной атмосфере. В присутствии кислорода результаты анализа всегда искажаются. В некоторых случаях проводится гидрогенизация продуктов пиролиза водородом. Высокое давление газа-носителя приводит к обогашению продуктов пиролиза низкокипящими соединениями. Материал, из которого изготовлен реактор (обычно стекло или кварц), и материал нити (обычно платина, нихром или вольфрам) чаще всего не оказывают заметного влияния на пирограмму. Хотя в ряде случаев и наблюдались некоторые отрицательные каталитические эффекты [15] (они проявляются в основном при использовании твердых носителей в ячейке реактора). Поверхность такой ячейки может быть в значительной степени покрыта продуктами пиролиза, полученными в предшествующих опытах, и каталитическая активность такой ячейки соответственно меняется. [c.233]

    Давление среды определяет форму и габаритные размеры аппарата, его материал, конструкцию перемешивающих устройств и сальников. Аппаратам, работающим под высоким давлением, обычно придают цилиндрическую или шаровую форму. Чем выше давление среды, тем меньше диаметр корпуса аппарата. При высоких давлениях редко используются цилиндрические реакторы с диаметром корпуса выше 1 м. [c.206]

    Зачем нужны гранулы и не проще ли все операции совместить в одном экструдере Действительно, когда знакомишься с технологией производства полиэтилена при высоком давлении, то оказывается, что полимер уже из. реактора выходит в виде плава. Затем материал еще раз пропускают через экструдер, чтобы основательно перемещать с красителем, стабилизатором и другими добавками. А потом уж на другом экструдере получают, например, пленку или оболочку для кабеля. [c.145]

    Стадию гидроформилирования проводят в обычных цилиндрических колоннах высокого давления с фланцевыми крышками. Часто несколько таких колонн соединяют последовательно. В качестве материала для реакторов пригодны обычные стали для футеровки применяют хромоникеле- [c.71]

    Так, например, в прежних установках для синтеза аммиака при пуске реактора пользовались пусковой печью, нагревающей смесь азота и водорода под давлением 300 атм с помощью горелок, питаемых водородом или топочным газом. Эта проблема была трудноразрешимой, потому что материал обогреваемых труб при высокой температуре должен был выдержать еще и напряжение на разрыв от действия высокого давления. Пользуясь значительной плотностью газа при таком высоком давлении, а также применив весьма большие скорости газового потока в трубах, коэффициент а со стороны нагреваемого газа увеличили настолько, что, несмотря на температуру 500°С в камере сжигания, температура стенки была близка к температуре нагреваемого газа 400" С). Нагреватель был изготовлен из низколегированной стали с небольшой примесью хрома и ванадия. [c.540]

    Некоторым недостатком водо-водяных реакторов является трудность компенсации температурного и других эффектов реакции, а также жесткие условия работы материала корпуса, подвергающегося действиям излучения и высокого давления. [c.262]

    Технологические функции футеровки в печах химических производств особенно важны, так как в большинстве случаев, печь представляет собой высокотемпературный реактор, де проводятся различные химико-технологические процессы при высоких давлениях, на которые оказывает химическое воздействие материал футеровки. Химические реакции, протекающие в печах при высокой температуре и давлении, являются основными чертами, по которым печи химической промышленности отличаются от других печей. [c.281]

    В разделе 1 уже отмечалось, что процесс крекинга требует большой затраты тепла даже для реакции разрьша цепи требуется приблизительно 18 ккал1моль расщепляемого углеводорода. Поскольку продолжительность пребывания углеводородов в зоне крекинга обычно мала (особенно при высокотемпературном процессе), возникает задача быстрой передачи тепла при высокой температуре от одного газа (топочные газы ) к другому (пары углеводородов). С такой проблемой часто сталкиваются при проектировании аппаратуры, применяющейся в промышленности химической переработки нефти. Большинство крекинг-печей состоит из секций узких трубок, через которые с большой скоростью проходят пары углеводородов эти трубки нагреваются за счет радиационного излучения топочных газов. Крекинг под давлением имеет два эксплуатационных преимущества сравнительно меньшие размеры крекинг-установки для данной производительности и лучшая теплопередача. Выход газа при применении высоких давлений сравнительно меньше. Второй задачей является выбор материала для изготовления реактора коекинг-печи. Этот материал должен обладать необходимой механической прочностью в условиях проведения крекинга он не должен влиять каталитически на процесс, в особенности не должен ускорять образование нефтяного кокса. При высокой температуре железо и никель вызывают отложение кокса на стенках реактора. В наиболее жестких условиях обычно применяют хромоникелевые стали (25% хрома и 18% никеля) в случае более умеренных режимов используют ряд легированных сталей, например аустенитные и молибденовые. С двумя новыми методами разрешения проблем, связанных с теплопередачей и выбором конструктивных материалов, читатель ознакомится позже, при описании дегидрирования этана. В этом случае для достижения высокой степени превращения процесс проводят при температуре около 900° (см. стр. 119). [c.113]

    Никаких ограничений точки эквивалентности исходного материала при осуществлении процесса ХС Юнибон не существует при условии,что уровни асфальтенов и металлов равны рекомендуемым пределам или меньше их. Величина эквивалентной точки оказывает воздействие на степень дезактивации катализатора, а значит и на конструкцию системы гидрокрекинга, поскольку материалы с более высокой точкой кипения содержат больше веществ, оказывающих вредное воздействие на коксы. Обработка исходного продукта с более высокой эквивалентной точкой в течение одного и того же промежутка времени требует более высоких давлений или большего реактора в новых установках или же использования более активного и температуроустойчивого катализатора в существующей установке. Капиталовложения в реакторы или в катализатор, как правило, быстро окупаются, в результате общего увеличения конверсии в средние дистиллаты на предприятии. ЮОПи накопила многолетний коммерческий опыт использования исходных продуктов гидрокрекинга, эквивалентные точки которых превышают 100°Г. Фирма обладает даже опытом использования исходного продукта, содержащего деметаллизованные масла (ДММ), которые извлекаются из вакуумного остатка и по существу нерастворимы. На протяжении более восы н лет в результате использования одной лицензии ЮОПи была осуществлена почти 100% конверсия смеси ВГО и ДММ. [c.302]

    По стехиометрии такие р-ции довольно просты, но по механизму они относятся к наиб, сложным гетерог. р-циям. Иногда при К. м. происходит и восстановление нек-рых компонентов материала напр., при высоких давлениях и т-рах карбиды восстанавливаются в стали проникающим водородом. К К. м. нередко относят также нек-рые случаи их растворения в жидких металлах (напр., растворение сталей в жидкометаллич, теплоносителях ядерных реакторов). [c.480]

    При умеренных температурах и давлениях, не превышающих нескольких атмосфер, выбор материала контейнера для фтора не слишком ограничен. При умеренных температурах подходящими конструкционными материалами могут служить кварц, сталь, никель, монельметалл и медь. При повышенных температурах предпочитают применять никель или платину. Реакции с участием фтора при высоких давлениях можно проводить лишь при условии, что реактор соответствующим образом экранирован, и все операции осуществляют при помощи дистанционного управления. Общие проблемы работы с элементарным фтором подробно обсуждали Ландау и Розен [82] и Кеди [83]. Приемы работы в лабораторных условиях с элементарным фтором и реакционноспособными фторидами были разработаны сотрудниками Аргоннской национальной лаборатории. Подробности можно найти в экспериментальных разделах статей, посвященных получению гексафторидов металлов (см. табл. И), и в обзорной статье Вайнштока [15]. [c.331]

    Остаток 15 из реактора пиролиза, содержащий как органические, так и неорганические материалы, направляют в обычный регенерационный бойлер 17. Если его не смешивают с раствором 16 и он подается в твердом виде, то он может быть подан в бойлер в разных точках — как в окислительную, так и в промежуточную либо в восстановительную зоны. Предпочтительно подавать пиролитический остаток непосредственно на слой расплава, что позволяет вводить материал в зону относительно низких температур и скоростей газа. Таким образом уменьшается вероятность уноса твердых частиц отходящими газами 20 в зону пароперегревателя и оттуда — в атмосферу. Отходящие газы проходят через систему для удаления твердых частиц 21, после чего очищенный газ 22 выходит в атмосферу. Тепло, генерируемое в регенерационной печи, используют для испарения поступающей воды 18 с получением в зоне пароперегревания водяного пара высокого давления 19. [c.354]

    Другими компонентами первичного контура реактора, которые тоже контролируются механизированно, являются сварные швы трубопроводов, ресиверы высокого давления и паровые котлы контроль труб паровых котлов рассмотрен в работах [388, 638]. Для контроля таких труб изнутри дополнительно применяют также вихретоковый способ, например при помощи комбинированного зонда (рис. 30.20). При подповерхностных дефектах для контроля применяют также и головные волны. Контроль часто затрудняется особенностями структуры материала (например, в случае аустенитных сварных швов [644, 642, 359, 358, 357, 1470, 540, 860]). На компонентах первичного контура применяют также такие системы контроля, как P-S an [1121, 361, [c.589]

    Когда установка выключена (перекрыт вентиль, регулирующий подачу воздуха), обратный поток твердой фазы незначителен из-за образования свода (зависания материала). Если же остановка произошла из-за выключения двигателя центробежного вентилятора, то более высокое давление в реакторе должно снизиться и поток газа (содержащего твердые частицы) изменит направление на обратное и пойдет через суженные отверстия газораспределителя. На рис. 111-60 показаны две конструкции входного отверстия для газа, которые успешно применяются для предотвращения обратного потока твердой фазы. Для достижения лучших результатов, независимо от устройства, путь газовому потоку преграждается и давление его снижается при проходе снизу вверх через слой. [c.279]

    Трудно ожидать существенного влияния катализатора на скорость окисления метана в метанол при высоком давлении. Ни один из изученных оксидов не показал результатов лучше, чем в гомогенном процессе, а температура инициирования реакции в присутствии оксидов повышалась. Вы-сказьшалось предположение о возможном влиянии материала реактора на окисление метана в метанол. [c.602]

    К торцам корпуса, как правило, привернуты две крышки, в которых расположены уплотнения и подшипники качения. В воздуходувках до окружной скорости вала 10 м/сек применяются уплотняющие кольца при более высоких окружных скоростях лучше применять лабиринтные уплотнения с гребнями лабиринтов (рис. 54). Особенно высокие требования предъявляются к уплотнениям вала газодувок, сжимающих сухой хлор. На рис. 55 показано такое уплотнение из графита, стекла и фторопласта с охлал<дение.м воздухом, проходящим через камеру уплотнения. На рис. 56 показана газодувка с уплотнениями, к которым предъявляются исключительно высокие требования. Газодувка работает в системе циркуляции углекислого газа, предназначенного для охлаждения ядерного реактора, при давлении газа 1,6 Мн1м . Корпусы подшипников, а также крышки цилиндров изготовлены из того же материала, что и корпус цилиндра. [c.77]

    Влияние материала, из которого изготовлен автоклав, на результаты полимеризации этилена. Оказалось, что материал реакционного сосуда, в котором проводится полимеризация, также оказывает влияние на свойства полимера. Обычное железо — литейное и сварочное — оказывает весьма неблагоприятное влияние на полимеризацию. Самыми подходящими для изготовления аппаратуры материалами, обладающими достаточной механической прочностью для работы под давлением, а также достаточной устойчивостью к корродирующему действию хлористого алюминия, являются никельхромистые стали, например марки N-6 (сплав 62,7% никеля, 1,70% марганца, 12,5% хрома и 22,5% железа). Сталь марки У2А оказывает тормозящее действие на полимеризацию. Для крупных автоклавов тормозящее влияиие материала на процесс полимеризации не имеет решающего значения, так как оно компенсируется благоприятным соотношением пространство — поверхность. Практика показала, что материал реактора через короткое время покрывается своего рода пассивированным слоем (защитная масляная пленка), и поэтому для изготовления аппаратуры высокого давления можно также применять обычные стали с незначительным содержанием легирующих компонентов. [c.598]

    Вопрос о влиянии на стабильность образовавшихся продуктов неполного окисления метана поверхности реактора является крайне важным. Сравнительное исследование стабильности метанола в реакторах из пирекса, нержавеющей стали и меди [40] показало, что на меди метанол распадается почти полностью уже при 375°С. Нержавеющая сталь значительно более инертна и пригодна до температур, превышающих 400°С. В пирексовом реакторе распад метанола не заметен даже при 500°С, однако все же до 15-18% метанола, добавляемого к реакционной смеси, распадается, видимо, из-за его вовлечения в реакцию [40]. Кварц и тефлон также входят в число оптимальных материалов для реакторов ПОММ [41]. При окислении легких парафинов в медных и стальных реакторах, особенно при атмосферном давлении, снижается выход как спиртов, так и альдегидов 92]. На некоторых поверхностях при распаде метанола образуется диметиловый эфир [93]. Но в конечном итоге материал реактора не оказывает решающего влияния на селективность образования метанола и других органических продуктов вследствие гомогенного характера реакции и малой скорости диффузии радикалов к поверхности при высоком давлении. Как показывают результаты пилотных испытаний [31], относительно невысокая температура процесса, не превышающая на выходе из реактора 600°С при начальной концентрации кислорода --3%, и низкая концентрация образующихся органических кислот вряд ли способны создать серьезные проблемы при выборе материала реактора. [c.144]


Смотреть страницы где упоминается термин Материалы для реакторов высокого давления: [c.598]    [c.301]    [c.505]    [c.334]    [c.183]    [c.229]    [c.183]    [c.59]    [c.160]    [c.456]    [c.248]    [c.32]    [c.90]    [c.90]   
Смотреть главы в:

Каталитические, фотохимические и электролитические реакции -> Материалы для реакторов высокого давления


Каталитические, фотохимические и электролитические реакции (1960) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Реакторы давлением



© 2025 chem21.info Реклама на сайте