Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектроскопическое промышленное получение

    Галлий Ga (см. также табл. 25) был предсказан Д. И. Менделеевым в 1870 г., открыт в 1875 г. (Лекок де Буабодран, Франция) спектроскопически в цинковой обманке — минерале сфалерите ZnS (куб.). Очень редкий элемент, по стоимости дороже золота. Получают в качестве побочного продукта в производстве алюминия нз бокситов из цинковых промышленных концентратов и летучей части золы в процессе газификации углей при электролизе щелочного раствора, полученного выщелачиванием медистых сланцев (выделяется на ртутном катоде). [c.310]


    Как видно из табл. II.4, в которой представлены средние результаты, получаемые при использовании разных методов, наибольшую точность обеспечивают ГЖХ и ТСХ с автоматическим обсчетом площадей пятен. Однако надежность данных, полученных методо м ГЖХ, -выше кроме того, следует учитывать то, что отечественная промышленность не выпускает серийно аппаратуру для автоматичеокого обсчета площадей пятен при ТСХ. Вымывание же (Веществ из пятен с последующим спектроскопическим анализом сложно и длительно. Применение УФ-спектроскопии для [c.71]

    Благодаря спектроскопическим методам исследования диацетиленов [31] стало известно, что промышленный винилацетат содержит свыше 50 примесей различных веществ, среди которых находятся ди ацетилен и этилдиацетилен [32]. В качестве побочного продукта диацетилен образуется при производстве винилхлорида методом гидрохлорирования ацетилена на медном катализаторе [33]. Наконец, при облучении ацетилена УФ-светом среди продуктов реакции, кроме высокополимерного купрена , были обнаружены диацетилен и бензол [34]. Возможностей получения диацетилена, таким образом, становилось все больше. Совершенствовались и препаративные методы его получения, которые в настоящее время можно разделить на три основные группы. [c.11]

    В последние несколько десятилетий автоматизация методов аналитической химии превратилась в основную тенденцию ее развития В 0 всех аспектах - научном и прикладных. Автоматизация химико-аналитических процессов - это доступное и эффективное средство повышения производительности труда химика-аналитика на всех стащях отбор, транспортировка, преобразование, утилизация проб, измерение параметров преобразованной пробы, а также стабилизация и (или) измерение параметров отбора и преобразования, обработка измерительной информации. Она позволяет своевременно обеспечивать информацией высокой точности и надежности промышленность, науку, здравоохранение и другие области человеческой деятельности. С другой стороны, разработка и внедрение современных спектроскопических, радиохимических, кинетических, электрохимических и других методов определения, а также методов разделения смесей, контроля состава веществ в потоке (без отбора проб) с использованием полученных сигналов в схемах управления технологическими процессами невозможны без применения автоматизированных технических средств, включая вычислительную технику. [c.5]

    В неорганической химической технологии три процесса являются первенствующими по своему значению в промышленности синтез аммиака, производство соды и получение серной кислоты. Между тем в то время как первый из них явился классическим примером при-менен1 я физической химии для разрешения технических проблем, последние, несмотря на всю их важность, исследованы далеко не достаточно. Отсутствуют исследования равновесия образования серного ангидрида с привлечением всех экспериментальных возможностей современной науки, не имеется спектроскопических данных по ингредиентам реакции, не исследована полная термодинамика процесса, связывающая высокотемпературные равновесия со стандартными термохимическими константами. Недостаточно развиты и модельные представления механизма действия катализатора. [c.22]


    Экспериментальное подтверждение третьего закона заключается в предсказании константы равновесия при использовании абсолютных энтропий, вычисленных из калориметрических или спектроскопических Аанных, и в сравнении предсказанного значения с экспериментально установленным. Сравнение абсолютных энтропий, найденных двумя путями, т. е. и спектроскопическим и термохимическим, является также средством проверки правильности третьего закона. Коротко можно сказать, что для всех реакций, исследованных в конденсированных системах, третий закон в пределах ошибки опыта является справедливым. В случае газовых реакций или при сравнении энтропий нз двух различных источников имеются определенные расхождения, но ббльшая часть их удовлетворительно объясняется. Поскольку дело касается практического применения, мы можем с уверенностью заключить, что все химические индивидуумы обладают некоторым значением абсолютной энтропии, которым можно пользоваться для предсказания равновесия. Для относительно простых молекул эти энтропии можно вычислить из спектроскопических данных с помощью статистической механики, и значения, определенные таким образом, будут, вероятно, более точны, чем полученные по термодинамическим измерениям. Для большинства веществ должен применяться калориметрический метод он состоит в определении теплоемкостей и скрытых теплот для всего диапазона температур. Охлаждать до абсолютного нуля практически невозможно, но если охлаждение осуществляется с помощью жидкого водорода примерно до 12° К, то остаточная энтропия мала, и экстраполяцию до 7=0 можно провести с достаточной уверенностью. Метод экстраполяции был намечен в гл. IX. Конечным результатом подобных измерений является составление таблиц абсолютных энтропий элементов, ионов и соединений. Такие таблицы ещ далеко не полны, но все же имеются величины для большого числа веществ, представляющих промышленное значение. [c.570]

    При полимеризации бутадиена с помощью катализаторов Циглера—Натта могут образоваться циклические (квазиароматиче-ские) структуры, часть из которых можно обнаружить в продуктах реакции. Эти структуры способны вызвать заметные изменения в спектре цыс-изомера вблизи 740 см . Однако в промышленном г ис-1,4-полибутадиене не обнаружены пока какие-либо структуры посторонних продуктов при использовании таких методов, как изомеризация, дейтерирование, ЯМР и анализ специфического поглощения чужеродных структур. Несмотря на это, нужно принимать во внимание постороннее поглощение при качественных и количественных ИК-спектроскопических исследованиях цыс-изомера. Так, при изучении спектра полибутадиена с высоким содержанием 1,2-структуры можно столкнуться с влиянием на поглощение цис-изомера гетеротактического, синдиотактического или изотактического 1,2-нолибутадиенов, полосы которых лежат в той же области спектра (см. табл. 6.46). Этот факт объясняет расхождения, имеющиеся в ранних работах, посвященных определению содержания с-изомера в полимерах, полученных в присутствии щелочного металла (буна 32).  [c.353]

    Металлический калий получают в промышленных масштабах электролизом расплавленного едкого калия. Есть и другие способы получения этого металла прокаливание углекислого калия с порошкам магния в атм-осфаре воцадрода или нагреваитие едкого кали со смесью карбида железа и углл. При применении двух последних способов восстановленный калий под действием высоких температур реакций улетучивается и пары его конденсируются под слоем керосина. Можно также получить калий, нагревая его хлористую соль с кальцием в вакууме или фтористую соль с карбидом кальция без доступа воздуха. Спектроскопически чистый калий, свободный от растворенных газов, может быть получен термическим разложением нитрида калия KN3 в токе авота или в вакууме. Реакция начинается при 320° и при 360° идет достаточно быстро. Выход калия составляет 80%. [c.46]

    К оптическому оборудованию принадлежит и аппаратура для спектрального анализа. Сюда помимо приборов для получения самих спектров (спектрометров, квантометров и др.) относятся приборы для получения спектра и его расшифровки. Для получения спектра используют дугу переменного тока, получаемую при помощи генераторов ДГ-1, ГЭУ-1, или конденсированную искру, получаемую при помощи генераторов ИГ-2, ИГ-3 и др. Самыми простыми приборами для получения спектров являются стилоскоп СЛ-П, стилометр СТ-7. В них количественное определение ведется визуальным сравнением интенсивностей близких линий определяемого элемента и стандарта. Они используются для быстрых массовых анализов. Более точные количественные спектроскопические измерения связаны с фотографированием спектра с последующей его расшифровкой. Такие спектроскопы с призмами или дифракционными решетками выпускаются отечественной промышленностью под марками СТЭ-1, ИСП-28 и др. Эти приборы устанавливаются в отдельных помещениях ЦЗЛ, причем проявление спектрограмм проводят в специальных кабинах. В этих же кабинах устанавливаются микрофотометры для определения интенсивности спектральных линий на фотопластинках. Эти методы применяются для анализов, пе требующих быстроты выполнения маркировочные, арбитражные и др. Для экспресс-аналнзов удобны спектральные приборы с автоматической фиксацией результатов типа квантометра ДФС-10. На них в зависимости от заданной программы можно получить результаты анализа одновременно для 10—30 элементов. Использование в этих приборах цифропечатающих приспособлений для выдачи результатов делает их очень удобными для массовых анализов. Обычно квантометры устанавливают в отдельных поме-112 [c.112]



Смотреть страницы где упоминается термин спектроскопическое промышленное получение: [c.9]    [c.288]   
Аналитическая химия брома (1980) -- [ c.8 , c.9 ]




ПОИСК







© 2025 chem21.info Реклама на сайте