Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамические и статические измерения связь

    Скорость химической реакции является функцией концентраций реагирующих веществ и температуры со — ==/(С, Т). Основные "методы определения со —динамический и статический. По первому методу смесь веществ подается в камеру, в которой поддерживается постоянная, достаточно высокая температура Т. Из камеры смесь выводится с возможно большей скоростью, чтобы быстро охладить ее — закалить , т. е. сохранить концентрации реагентов, достигнутые при Т. Зная время пребывания смеси в камере, начальные концентрации и состав закаленной смеси, определяют со. В статических методах определяют изменения концентраций в зависимости от времени при протекании реакций в замкнутых камерах либо путем быстрого отбора проб и их анализа, либо по измерениям физических свойств, зависящих от концентраций. Так, если реакция 2С0 (г)+02(г) = ==2С02(г) идет в замкнутом сосуде, то это сопровождается уменьшением общего давления, по величине которого можно найти й. Часто скорости реакций находят из измерений теплопроводности, коэффициента преломления, электропроводности и т. п., которые связаны с концентрациями. [c.232]


    Для измерения краевых углов было предложено довольно много методов, так как точное измерение встречает ряд трудностей. Эти трудности связаны, главным образом, с явлением статического и динамического гистерезиса смачивания. Гистерезисом смачивания называется отклонение величины краевого угла от значения его, соответствующего состоянию равновесия капли. [c.138]

    Классификация методов измерения поверхностного натяжения. Существуют статические и динамические методы. Статические методы заключаются в измерении натяжения практически неподвижных поверхностей, образованных за некоторое время до начала измерения. В основе каждого статического метода лежит один из следующих двух принципов наиболее точные методы связаны с измерением разности давлений между вогнутой и выпуклой сторонами поверхности раздела, обладающей поверхностным натяжением (гл. 1, 10) и во многих случаях сводятся к измерению гидростатического давления у поверхности жидкости предписанной кривизны к числу этих методов относятся многочисленные варианты метода капиллярного поднятия, метод максимального давления пузырьков, метод счёта капель и метод неподвижных капель второй принцип, дающий менее точные результаты, но во многих случаях более удобный благодаря быстроте измерений, заключается в растяжении плёнки жидкости, временно прилипающей к твёрдой рамке к числу таких методов принадлежит метод отрыва кольца от поверхности жидкости и измерения поверхностного натяжения мыльных растворов путём растяжения мыльной плёнки. [c.466]

    Применение статического метода в лабораторных условиях, особенно при повышенных температурах, связано с экспериментальными трудностями и чаще всего используют динамический метод определения давления паров, тем более, что контролировать давление не сложно, благодаря наличию точно работающих регуляторов. Разумеется, при подобных измерениях важно заранее убедиться в достаточной чистоте исследуемого вещества. [c.55]

    К первой группе испытаний относится метод крутильных колебаний и модернизация метода распространения ультразвуковых колебаний [И]. Второй тип испытаний связан с использованием двух регистрирующих методов. Оба они — варианты динамических испытаний, в которых задается циклическое изменение напряжений и регистрируется действительная (С) и мнимая О") компоненты комплексного модуля упругости С. Эти компоненты связаны соответственно с запасаемой и рассеиваемой энергией в том же смысле, в каком при статических измерениях эти эффекты отражают величины О и г.  [c.19]


    Обычно параметры, относящиеся к обеим группам, определяют нри помощи статических адсорбционных измерений. В носледнее время появились динамические способы, в большей мере использующие газовую хроматографию. Впоследствии сложилось мнение, что для определения физикохимических констант необходимо привлекать адсорбционно-хроматографические способы, а не распределительную хроматографию. Кремер и Приор рассмотрели в 1951 г. связь между удерживанием газов на адсорбционной колонке и теплотой адсорбции. В последнее время Кремер и сотр. (1959, 1961) существенно развили исследования в этой специальной области. [c.463]

    Сейчас уже не нужно доказывать, что любое обсуждение свойств полимера должно включать рассмотрение влияния времени и температуры. Влияние времени будет обсуждаться позднее, а основной темой данного раздела будет влияние температуры. Наиболее важные изменения в механических свойствах имеют место при температурах фазовых переходов или релаксации. Поэтому необходимо точно определить переходы первого и второго рода. Однако не всегда исследователи придерживаются единой точки зрения относительно областей этих переходов, в основном это связано с тем, что используются различные методы. Такие статические измерения, как дилатометрия и калориметрия, обычно дают более низкую температуру для того же самого перехода, чем динамические методы (механические, диэлектрические и ЯМР). При измерениях динамическими методами с повышением частоты точка перехода сдвигается в область более высоких температур. Еще больше запутывает вопрос то обстоятельство, что статические методы иногда могут показать существование перехода, не обнаруживаемого динамическими методами, и наоборот. [c.414]

    Для измерения поверхностного натяжения индивидуальных жидкостей пригодны все методы, поскольку между результатами, полученными статическими и динамическими способами, нет заметной разницы. У растворов же результаты измерений о разными методами могут сильно отличаться из-за медленного установления равновесного распределения растворенных веществ между свеже-образованной поверхностью и объемом раствора. Это в особенности относится к растворам мицеллообразующих и высокомолекулярных ПАВ (белковые вещества, сапонины, высшие гомологи мыл). Получение в таких растворах равновесных значений поверхностного натяжения требует применения статических методов. Пригодны и некоторые из полустатических методов, например методы отрыва кольца, счета капель, наибольшего давления пузырьков и др. При простоте и удобстве работы эти методы дают вполне удовлетворительные результаты, если измерения проводят таким образом, что время формирования новой поверхности в виде капли является достаточным для установления концентрационного равновесия. В растворах низкомолекулярных ПАВ равновесные значения а обычно достигаются менее чем за минуту для растворов ПАВ более сложной структуры на установление равновесия может потребоваться до нескольких десятков минут в связи с медленной диффузией их молекул. Таким образом, для правильного выбора метода исследования необходимо учитывать кинетику установления равновесных, т. е. наименьших, значений поверхностного натяжения. [c.311]

    В связи с тем что а зависит от условий измерения, различают статическое и динамическое поверхностное натяжение. Статическое поверхностное натяжение измеряют в условиях длительного существования адсорбирующей поверхности, когда адсорбционный слой находится в равновесном (статическом) состоянии. Эту величину измеряют методами капиллярного поднятия, висячей капли, лежащей капли. Динамическое поверхностное натяжение измеряют при быстром образовании поверхности, так что адсорбция на ней не достигает равновесного значения. Величина [c.108]

    Принципиальная проблема физики звездообразных полимеров связана с вопросом о характере связи между динамикой и структурой звезд. В работе [70] проведены измерения дифракции и квазиупругого рассеяния нейтронов определена конформация лучей и сопоставлена с характером сегментальной релаксации в полимерных звездах в разбавленном растворе и расплаве для соответствующих линейных молекул. Обнаружена прямая корреляция между структурными особенностями и релаксационными свойствами системы звезд. Хотя отдельные лучи даже при высокой функциональности центра ведут себя подобно линейным макромолекулам, статические и динамические свойства всей звезды, ядра и оболочки отличаются от линейных цепей и качественно различны между собой. Эти отличия отражают коллективные явления, обусловленные взаимодействием лучей в звездах, причем взаимодействия качественно разные во внутренних и внешних областях звезд. [c.209]


    Динамические механические свойства испытываемого материала обычно выражают в виде зависнмостей О и G" от частоты при постоянной температуре или от температуры при постоянной частоте. Основное отличие динамических испытаний от статических состоит в том, что при статических испытаниях б качестве независимого переменного выступает время, а не частота. Если измерения проводятся в области относительно малых амплитуд деформаций (для пластмасс 0,1 — 1%, для эластомеров 10—100%), то напряжения пропорциональны деформациям. Поэтому различие между статическими и динамическими измерениями в этом случае связано не с принципиальными особенностями поведения исследуемого материала при деформациях разного типа, а лишь с практическими удобствами. В линейной области механического поведения вязкоупругих тел всегда можно установить корреляцию между динамическими и статическими свойствами исследуемого объекта. Гросс приводит следующие формулы, связывающие динамический модуль со статической функцией G t)  [c.296]

    Устраняется также трудность [55] , возникающая при использовании абсолютной интенсивности поглощения инфракрасного излучения для определения дипольных моментов связей, как, например, С—Н. Когда связь С—Н в этилене участвует в деформационных колебаниях, составляющая ее дипольного момента вдоль любой оси симметрии молекулы будет флуктуировать. Интенсивность поглощения при колебаниях зависит от величины флуктуирующего диполя. Следовательно, экспериментальные измерения интенсивностей дают величину флуктуирующего дипольного момента. При этом оказывается, что наблюдаемый момент связи С—И различен при различных нормальных колебаниях. Последнее объясняется тем, что при некоторых нормальных колебаниях гибридные АО атома углерода могут следовать за атомами Н с большей легкостью, чем при других нормальных колебаниях, вследствие чего вклад атомных диполей (раздел 8.10) меняется разным образом при различных нормальных колебаниях. В результате статический дипольный момент связи может существенно отличаться от динамического момента, относящегося к какому-либо определенному нормальному колебанию. [c.250]

    Структурные схемы изображают связь между входом и выходом системы регулирования. Они устанавливают алгоритм для количественной оценки динамических свойств процесса. Эти схемы позволяют выяснить физическую сущность переменных, подлежащих измерению или регулированию, количественно оценить статические и динамические соотношения между входными и выходными параметрами, выявить общую природу устойчивости систем регулирования и, что самое главное, дают топологию процесса. [c.328]

    В основе статических методов измерений лежат два принципа. Первый заключается в прямом или косвенном определении разности давлений между выпуклой и вогнутой сторонами искривленной поверхности, вызванной наличием свободной поверхностной энергии. Второй принцип сводится к измерению силы, необходимой для медленного увеличения поверхности раздела. Динамические методы основываются на исследовании образования волн в быстро движущейся (колеблющейся) массе жидкости. Сила, восстанавливающая деформированную поверхность жидкости, обусловлена существованием свободной поверхностной энергии, которая, будучи таким образом связана с формой струи или с длиной волны, может быть рассчитана.  [c.260]

    Емкостные преобразователи. С помощью преобразователен этого типа измеряют изменение емкости конденсатора при увеличении или уменьщении расстояния между его пластинами под действием прилагаемой нагрузки. При использовании переменного тока высокой частоты чувствительность преобразователя значительно повышается, и те или иные физические характеристики можно измерять достаточно точно. Метод применим для статических и динамических измерений. Некоторые неудобства связаны с необходимостью использования -коаксиальных кабелей и высокой чувствительностью схемы преобразователя к изменению температуры. [c.38]

    Результаты измерений динамическими методами совпадают с данными статических методов только для чистых жидкостей. Для растворов, особенно растворов поверхностноактивных веществ, между ними имеют место большие расхождения. Это связано с тем, что для перехода молекул растворенного вещества из объема на поверхность. [c.266]

    По сравнению со статическими связана с тем, что при измерении динамических модулей на их значение мало влияют релаксационные процессы, и они изменяются главным образом за счет расстояния между молекулами. [c.26]

    Измерениями установлено существование поля статического давления также и в самих струях, характер и величина которого зависят от профиля сопла. В связи с этим, как указывалось выше, динамический напор в отдельных точках объема струи определялся но разности полного и статического давлений в этих точках. [c.60]

    Дилатометрические измерения быстро охлажденных образцов ПХТФЭ показывают, что Гg находится вблизи 50 °С [27, 351. Эта температура соответствует примерно минимуму между двумя пиками потерь, если ее сравнивать с динамическими механическими данными (рис. 4) [31, 37, 39]. Поскольку пики потерь или максимумы (хотя и несколько произвольно) обычно принимаются за температуры переходов при динамических измерениях и поскольку они хорошо согласуются с результатами статических измерений (см., например, эмпирическую корреляцию Льюиса [48[), ПХТФЭ, по-видимому, является в данном случае исключением. Фактически соответствие минимуму потерь является случайным из-за пика потерь ниже 50 °С, который нельзя определить статическими методами. Большинство данных свидетельствует о том, что релаксация, представленная пиком динамических потерь в области 90 °С, связана со статической температурой стеклования при 50 °С. [c.416]

    Подобно другим механическим испытаниям, твердость можно определить как при статическом, так и при динамическом нагружении в различных температурных условиях. Наибольшее практическое значение имеют статические испытания на твердость при вдавливании стандартного наконечника. В практике испытания металлов твердость определяют измерением диаметра отпечатка. Это связано с тем, что измерение диаметра отпечатка требует меньшей точности мерительных средств. Поэтому измерение отпечатка более надежно, чем измерение глубины внедрения индентора. В случае испытания полимерных материалов получить стабильный по своим геометрическим формам отпечаток не представляется возможным вследствие ярко выраженных упруго-пластических и релаксационных свойств этих материалов. Поэтому твердость полимерных материалов определяют по величине погружения индентора за стандартный промежуток времени под стандартной на) рузкой. Почти во всех существующих приборах для определения твердости полимерных [c.61]

    Если при динамических испытаниях не удается добиться, разрушения стыка (т. е. определить собственно прочность связи), целесообразно утомлять образцы в условиях, отвечающих эксплуатационным, а определять изменение прочности связи, каким-либо статическим методом, обеспечивающим непосредственное измерение усилий, разрушающих стык. [c.377]

    Структурно-механические характеристики порошков, измеренные в статических условиях, не позволяют предсказывать их поведение в динамических условиях метод измерения сопротивления сдвигу после воздействия вибрации можно рассматривать как промежуточный между статическими и динамическими методами испытаний он качественно отражает изменения, происходящие в порошках при переходе в динамические условия при динамическом воздействии происходит разрушение слабых контактных связей с заменой их на более сильные. Разрушение слабых контактов между частицами ВДП в статических условиях может привести к ухудшению реологических свойств системы в динамических условиях или после прекращения динамических воздействий. Именно этими обстоятельствами можно объяснить многочисленные факты резкого увеличения вязкости ВДП в ходе технологических процессов с их участием, слеживаемость не только гигроскопичных, но и гидрофобных порошкообразных материалов, трудности при перемешивании многокомпонентных сыпучих материалов, необходимость создания больших уплотняющих давлений при получении керамических, металлокерамических и других изделий. [c.121]

    Следует учитывать, что, как отмечалось в литературе [1], существуют три различные концепции дипольных моментов связей характеристические моменты (вычисляемые теоретически), динамические моменты (определяемые по данным ИК-спектроскопии) и статические моменты (определяемые эмпирически по данным измерений дипольных моментов молекул). Величины дипольных моментов, приведенные в настоящем справочнике, относятся к шкале статических моментов, которая является одной из наиболее употребимых. При пользовании этими данными необходимо учитывать следующие замечания  [c.147]

    При адсорбции на твердых телах разной природы проявляются молекулярные и химические взаимодействия во всем их разнообразии от ван-дер-ваальсовых взаимодействий до образования нестойких донорно-акцепторных соединений и прочных ковалентных связей. Исследование этих взаимодействий в случае адсорбции имеет свои преимущества. Во-первых, в отличие от газов и жидких растворов, силовые центры на поверхности адсорбента фиксированы. Во-вторых, в отличие от объема твердого тела, на поверхности можно реализовать невозмущенное состояние отдельных функциональных групп, например гидроксильных. Вместе с тем, поверхностные соединения и адсорбционные комплексы можно изучать с помощью химических и физических методов, дающих богатую информацию о химии поверхности, природе адсорбционного взаимодействия и состоянии адсорбированного вещества. Здесь нашли широкое применение химические, изотопнообменные, дифр актометрические и спектроскопические методы исследования состава и структуры поверхностного слоя твердого тела и поверхностных соединений, спектроскопические и радиоспектроскопические методы изучения состояния адсорбционных комплексов, а также статические и динамические (в частности, хроматографические и калориметрические) методы измерения изотермы адсорбции, теплоты адсорбции и теплоемкости адсорбционных систем. Однако исследованию адсорбции комплексом этих методов долгое время мешала неоднородность состава и структуры самих объектов исследования — традиционно применявшихся адсорбентов (активные угли, силикагели и другие ксерогели). В результате, во-первых, образовался разрыв между молекулярными моделями адсорбции, используемыми в теоретических исследованиях, и экспериментальными данными, получаемыми на адсорбентах, по степени чистоты и неоднородности структуры весьма далеких от теоретических моделей. Благодаря этому молекулярная теория адсорбции не находила экспериментальной базы, и ее развитие задерживалось. Во-вторых, выпускавшийся набор адсорбентов не смог удовлетворить и запросы новой техники. Например, для использования в хроматографии [c.5]

    Обычно применяют динамический метод, так как работа по статическому методу в лаборатории, особенно при повышенной температуре, связана с экспериментальными трудностями, а регулирование давления благодаря наличию точно работающих регуляторов давления в настоящее время протекает без всяких осложне ний. При подобных измерениях особенно важно тщательно прове рять степень чистоты испытуемого вещества. [c.56]

    Таким образом, основной характеристикой сопротивления материала как при статической, так и при динамической нагрузке служит механическая долговечность, т. е. время от момента приложения нагрузки до момента разрушения. В многочисленных работах, рассмотренных в обзорной статье Аскадского [283], показано, что существование временной зависимости прочности наблюдается для всех твердых тел и связано с самой природой разрушения. Эти работы подтвердили основное положение флуктуациоиной теории прочности, согласно которой разрушение полимерных и других твердых тел происходит во времени вследствие распада контактов и химических связей под действием нагрузки. Недавние исследования Влодавца и сотр. и Стратулата [288, 289] указали на принципиальную возмо кность использования измерений долговечности при изучении механических свойств не только монолитных твердых тел, но и дисперсных коагуляционных и конденсационных структур . [c.121]

    Для измерения адгезионной прочности в динамических условиях могут быть использованы различные приборы. Широкое применение имеют машины типа Де-Маттиа [40, 129—131], обладающие такой же универсальностью при динамических испытаниях, как и разрывные машины типа маятникового динамометра при статических испытаниях. Иногда прочность связи между слоями резины может быть определена на флексометре Гудрича [40,132]. Измерение прочности связи единичной нити корда с резиной можно проводить на машине Генлея [40, 133] и на машине Роллер-флекс [40, 134]. [c.230]

    Полная картина реологических свойств асфальтовых битумов может быть получена только при исследованиях, охватывающих птиро1гую область-действия нагрузки во времени. Для длительного времени действия нагрузки прихменялся статический метод, а для коротких — динамический [2]. Существенно, чтобы расиределение напряжения в испытуемом образце было простым и вполне известным. Тогда деформация может быть выражена через удлинение или сдвиг как функция нагрузки и временя. Величины, полученные таким образом, ири измерениях лучше всего могут быть представлепы в виде кривой, где общий модуль упругости (отношение нагрузх и к деформации), который был назван жесткостью, представлен как функция времени [2]. Фиг. i показывает эту связь для ряда битумов, различающихся по твердости и типу,. [c.14]


Смотреть страницы где упоминается термин Динамические и статические измерения связь: [c.310]    [c.188]    [c.189]    [c.213]    [c.162]    [c.147]    [c.734]    [c.12]    [c.171]    [c.13]    [c.99]    [c.215]   
Энциклопедия полимеров Том 1 (1974) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение динамический



© 2025 chem21.info Реклама на сайте