Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гены репрессия

    Регуляция биосинтеза аминокислот, основанная на изменении концентрации ферментов, — это генный уровень регуляции. Если данная аминокислота присутствует в достаточном количестве, гены, кодирующие ферменты этого пути, репрессируются, когда же ее концентрация снижается, происходит индукция генов и ферменты начинают вырабатываться в большом количестве. Механизм генетической репрессии приведен в главе 29. [c.407]


    Развитие многоклеточных эукариотических организмов основано на способности клеток передавать в ряду поколений активное или, наоборот, репрессированное состояние гена. Наследование состояния гена приводит в конечном итоге к образованию дифференцированной ткани, состоящей из клеток, в которых лишь небольшая часть генов активирована на фоне репрессии основной части генома. Исследование молекулярных механизмов, обеспечивающих наследование активного или неактивного состояния гена в ряду клеточных поколений, представляется чрезвычайно важным. По-видимому, в основе этих механизмов лежат не только программированные взаимодействия белков и ДНК, обеспечивающие наследуемую локальную организацию хроматина, но и процессы метилирования ДНК. Метилирование можно расс.матривать как особый механизм контроля транскрипции, существующий наряду с механизмами, основанными на взаимодействиях между цис-действую-щими регуляторными элементами и факторами транскрипции. [c.218]

    Промоторные элементы генов одноклеточных эукариот — дрожжей — содержат сайты инициации (И), нуклеотидную последовательность ТАТА (обычно ТАТААА), а также другие элементы — активирующие последовательности (АП, UAS, англ. upstream a tivating sequen es), находящиеся перед сайтом инициации транскрипции (рис. 111, а). Кроме того, промотор может содержать элементы оператора О, участвующего в репрессии транскрипции. Расстояние между ТАТА-элементом и сайтом инициации может варьировать от 40 до 120 п. н., и в отличие, например, от промоторов позвоночных в промоторах дрожжей правильная точная инициация транскрипции сохраняется при изменении расстояния между сайтом инициации и ТАТА-элементом. Инициаторный элемент представляет собой особый участок, включающий нуклеотидную последовательность [c.196]

    Известно, что бактериальная клетка не допускает избыточной продукции рибосомных белков. Практически их синтезируется столько, сколько требуется для сборки рибосом, в соответствии с количеством образующейся рибосомной РНК, и сколько-нибудь серьезного избытка свободных рибосомных белков в нормальной клетке не бывает. Поразительно одинаковый и координированный уровень продукции всех 52 рибосомных белков достигается несмотря на то, что их гены вовсе не организованы в единый регулируемый блок, а представлены независимыми приблизительно 16 оперонами, распределенными по геному клетки. Оказалось, что координированно одинаковая продукция практически всех рибосомных белков и отсутствие их избыточной продукции поддерживаются регуляторным механизмом, обеспечивающим репрессию трансляции избытком белка (трансляционная регуляция по принципу обратной связи). [c.237]


    Многие репликоны используют, по-видимому, совершенно иную стратегию регуляции собственного синтеза. Для инициации репликации этих репликонов необходим белок-инициатор (например, белок Е в случае плазмиды F). от белок специфически связывается с определенной последовательностью ДНК, многократно повторенной на данном репликоне. Связывание белка-инициатора с одной или несколькими такими последовательностями, находящимися в ориджине, необходимо для инициации. Одна из последовательностей находится в начале гена бел ка-инициатор а, так что связывание с ней белка подавляет его собственный синтез. Считается, что регуляция репликации осуществляется благодаря сложной конкуренции за белок-инициатор между участком ДНК, необходимым для собственной репрессии, участком (или участками), необходимым для инициации синтеза ДНК, и другими участками связывания. Хотя подобные репликоны пока еще недостаточно изучены и детальная картина регуляции репликации не ясна, очевидно, что наличие множественных мест связывания ключевого белка инициации репликации позволяет регуляторной системе очень чутко отзываться на изменение копийности репликона. Например, если плазмида содержит 10 повторенных мест связывания белка-инициатора, то появление за счет репликации од ой дополнительной копии плазмиды увеличит число участков связывания на 10. В определенном смысле многократно повторенные участки связывания белка-инициатора, суммарное количество которых пропорционально копийности репликона, аналогичны ранее рассмотренной ингибиторной РНК, концентрация которой также пропорциональна копийности. [c.67]

    Кроме этого в бактериальных клетках имеются ферменты, количества которых могут резко меняться в зависимости от состава питательных веществ среды. Это происходит в результате того, что гены, детерминирующие эти ферменты, включаются или выключаются по мере надобности. Их называют индуцибельны-м и. При отсутствии в среде субстратов этих ферментов последние содержатся в клетке в следовых количествах. Если в среду добавить вещество, служащее субстратом определенного фермента, происходит быстрый синтез этого фермента в клетке, т.е. имеет место индукция синтеза фермента. Если же в питательной среде в готовом виде содержится вещество, являющееся конечным продуктом какого-либо биосинтетического пути, происходит быстрое прекращение синтеза ферментов этого пути. Это явление получило название репрессии конечным продуктом. Ферменты, синтез которых подавляется конечным продуктом, могут быть дерепрессированы, т. е. скорость их синтеза превысит обычную, если концентрация конечного продукта упадет до очень низкого уровня. Дерепрессия этих ферментов аналогична явлению индукции. [c.118]

    Роль важного регуляторного агента в бактериальных клетках играет циклический АМР (сАМР, гл. 7, разд, Д, 8). Примером процесса, опосредованного участием сАМР, может служить катаболитная репрессия. Сущность этого процесса состоит в ингибировании (катаболитом) транскрипции генов, детерминирующих синтез ферментов, необходимых для катаболизма лактозы или других энергетических субстратов, когда в среде присутствует глюкоза — более эффективный источник энергии. Механизм этого процесса не известен, однако установлено, что в присутствии глюкозы концентрация сАМР снижается. [c.204]

    Как было указано, концентрация ряда ферментов в клетках резко снижается при повышении содержания отдаленных конечных продуктов, образующихся в цепи последовательных ферментативных реакций. Такой эффект, получивший название репрессии ферментов, часто наблюдается при реакциях биосинтеза. В этих случаях молекулы репрессора, также образующиеся в рибосомах ядра по команде гена-регулятора, являются неактивными и сами по себе не обладают способностью подавлять деятельность гена-оператора и, следовательно, всего оперона, но приобретают такую способность после образования комплекса с конечным или одним из конечных продуктов биосинтетического процесса (см. рис. 14.13). [c.537]

    Изменение количества синтезируемых ферментов в клетке идет в результате действия механизмов индукции и репрессии. Индукцией называют процесс увеличения количества соответствующего фермента в клетке под влиянием субстрата. Последний индуцирует образование главным образом ферментов обмена веществ в процессах энергетического катаболизма. Если в состав ДНК входит несколько генОв, определяющих синтез относящихся к разным субстратам ферментов, то в конкретных условиях среды, содержащей определенные субстраты, целесообразно синтезировать только те ферменты, для действия которых в среде имеется субстрат. [c.46]

    Живая клетка способна контролировать биосинтез белка, причем некоторые белки образуются только в определенных условиях, другие же синтезируются в увеличенном или уменьшенном количестве. Контроль биосинтеза белка был объяснен Ф. Жакобом и Ж. Моно в 1961 г. в предложенной ими теории индукции-репрессии генов. [c.60]


    Биосинтез антибиотиков, как и любых других вторичных метаболитов, возрастает в фазе замедленного роста клеточной популяции (конец трофофазы) и достигает максимума в стационарной фазе (идиофазе). Считают, что в конце трофофазы изменяется энзиматический статус клеток, появляются индукторы вторичного метаболизма, освобождающие гены вторичного метаболизма из-под влияния катаболитной репрессии. Поэтому любые механизмы, тормозящие клеточную пролиферацию и активный рост, стрессовые ситуации, активируют процесс образования антибиотиков. [c.67]

    Белок, кодируемый клонированным геном, не синтезируется (репрессия) [c.110]

    Различают экстенсивную и интенсивную регуляцию активности ферментов в клетках и тканях организма. Экстенсивная регуляция обусловлена индукцией или репрессией генов, кодирующих синтез соответствующих ферментов. Увеличение или уменьшение числа активных молекул определяет суммарную активность пула данного фермента в каком-либо компартменте клетки, в ткани или целом органе. В физиологических условиях содержание того или иного фермента в клетке постоянно и регулируется двумя процессами скоростью его синтеза и распада. Оба эти процесса взаимосвязаны и контролируются на генном уровне. Увеличение скорости синтеза ферментативного белка обусловливает активацию внутриклеточных протеиназ и ускоренный распад старых молекул фермента, а снижение скорости синтеза приводит к замедлению распада ферментативного белка. [c.80]

    Интерлейкины действуют на клетки, связываясь с соответствующими рецепторами на цитоплазматической мембране, при этом индуцируется каскад реакций, приводящих к индукции или репрессии соответствующих генов. [c.481]

    Если конечного продукта много, ген репрессируется, если снижается ниже оптимальной ген дерепрессируется (генетическая репрессия). Этот способ регулирования синтеза менее быстрый, чем алло-стерическое регулирование биосинтеза аминокислот. [c.125]

    Образование петель постулировано и при репрессии арабинозного оперона агаВАО. Репрессоро.м этого оперона является белок, кодируемый геном агаС. В отсутствие арабинозы АгаС-белок, являющийся димером, репрессирует агабЛО-оперон, а в присутствии арабинозы превращается в активатор, который активирует этот оперон. Кроме того, АгаС-белок как в присутствии, так и в отсутствие арабинозы умеренно репрессирует транскрипцию своего собственного гена, в результате чего концентрация АгаС-белка поддерживается на постоянном уровне. [c.151]

    Общую теорию регуляции синтеза белка разработали французские ученые, лауреаты Нобелевской премии Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к выключению или включению генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию на синтез специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизмы регуляции синтеза белка, вероятнее всего, являются более сложными (см. далее). У бактерий доказана индукция ферментов (синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления—индукция и репрессия—взаимосвязаны. [c.535]

    Репрессия (Repression) Один из двух альтернативных (наряду с индукцией) механизмов регуляции генов. Состоит в подавлении транскрипции или трансляции путем связывания белка-репрессора с оператором. [c.558]

    Репрессия генной активности наблюдается в результате прямо-IX) ферментативного метилирования генов. Метилированные гены, введенные в культуры клеток, сохраняют неактивное метилированное состояние в ряду поколений после многих актов репликации-Не ясно, является ли метилирование in vivo причиной инактивации i HOB нли лишь закрепляет неактивное состояние, уже достигну- > е, например, в результате предшествующего взаимодействия с белками. [c.219]

    Обоснованно принято считать, что большинство многоклеточных растений и животных начинает жизненный цикл с одной клетки - зиготы (оплодотворенного яйца). В результате многократных митотических делений из этой клетки возникает сложный, высокодифференцируемый организм. Этот процесс называют ростом и развитием. При этом упомянутый процесс включает дифференци-ровку. В результате дифференцировки клетка приобретает определенную структуру и, размножаясь, производит себе подобные. Так, в многоклеточном организме возникают различные ткани (органы) и происходит формирование сложного организма. Как полагают, причина этого явления не ясна [30]. Однако рост и развитие, несомненно, связаны с индукцией и репрессией генов. Считают, что дифференцировка проявляется через сложные взаимодействия между ядром, цитоплазмой и окружающей средой клетки. В литературе обсуждены различные этапы механизма дифференцировки. Их, естественно, весьма много [30, 31]. [c.22]

    РЕГУЛЯТОРНЫЕ БЕЛКИ (от лат. regulo-привожу в порядок, налаживаю), группа белков, участвующих в регуляции разл. биохим. процессов. Важная группа Р. б., к-рым посвящена эта статья,-белки, взаимодействующие с ДНК и управляющие экспрессией генов (выражение гена в признаках и св-вах организма). Подавляющее большинство таких Р. б. функционирует на уровне транскрипции (синтез матричных РНК, или мРНК, на ДНК-матрице) и отвечает за активацию или репрессию (подавление) синтеза мРНК (соотв. белки-активаторы и белки-репрессоры). [c.217]

    Эукариотич. клетки реагируют на внеш. сигналы (для них это, напр., гормоны) в принципе так же, как бактериальные клетки реагируют на. изменения концентрации питат. в-в в окружающей среде, т.е. путем обратимой репрессии или активации (дерепрессии) отдельных генов. При зтом Р. б., одновременно контролирующие активность большого числа генов, могут использоваться в разл. комбинациях. Подобная комбинационная генетич. регуляция может обеспечивать дифференцир. развитие всего сложного многоклеточного организма благодаря взаимод. относительно небольшого числа ключевых Р. 6. [c.218]

    Установлено, что катаболитная репрессия опосредуется действием специального белка-активатора катаболитных генов (БАК). Об отсутствии глюкозы в среде срппализйрует цАМФ. Лишь при дефиците глюкозы формируется комплекс цАМФ и ВАК, абсолютно необходимый для связывания РНК-полимеразы с зоной промотора и начала транскрипции генов. В присутствга глюкозы концентрация цАМФ недостаточна для образования комплекса. Уровень цАМФ в клетке является функцией активности адени-латциклазы, синтез которой подавляется в присутствии глюкозы  [c.38]

    РИС. 6-15. Некоторые механизмы контроля метаболических реакций. На всех приведенных в книге рисунках модуляция активности фермента аллостерическими эффекторами, а также модуляция активности генов (транскрипция и трансляция) обозначается пунктирными линиями, отходящими от соответствующего метаболита. Линии заканчиваются знаком минус в случае ингибирования идерепрессиии знаком плюс в случае активации и депрессии. Кружки соответствуют прямому действию иа ферменты, а квадратики — репрессии или индукции синтеза ферментов. (Подобная схема представлена в работе [66а].) [c.64]

    Шродукт гена сП присоединяется к определенным участкам ДНК н активирует промоторы и Pj (активирующее действие обозначено сплошными стрелками). Белок Hfl — продукт соответствующего клеточного гена —разрушает белок СП, а продукт фагового гена.сП препятствует этому разрушению. Клеточная система катаболитной репрессии (с. МР-САР) угнетает активность гена hfl] прерывистые стрелки — угнетающие эффекты волнистые линии — мРИК жирная линия — фрагмент фаговой ДНК [c.294]

    Регуляторный механизм репрессии конечным продуктом показан на рис. 22. Из него видно, что ген-регулятор образует апорепрессор, превращающийся в репрессор только после связи с конечным продуктом реакций — корепрессором. Только в таком связанном виде репрессор блокирует ген-оператор и прекращает синтез фермента. [c.48]

    Механизм репрессии конечным продуктом на уровне транскрипции стал проясняться с 50-х гг. XX в. Большой вклад в это внесли работы Ф. Жакоба и Ж. Моно. Было показано, что наряду со структурными генами, кодирующими синтез ферментов, в бактериальном геноме существуют специальные регуляторные гены. Один из них — ген-регулятор (ген К), функция которого заключается в регуляции процесса транскрипции структурного гена (или генов). Ген-регулятор кодирует синтез специфического аллосте-рического белка-репрессора, имеющего два центра связывания один узнает определенную последовательность нуклеотидов на участке ДНК, называемом оператором (ген О), другой — взаимодействует с эффектором. Ген-оператор расположен рядом со структурным геном (генами) и служит местом связывания репрессора. В отличие от операторных генов гены-регуляторы расположены на некотором расстоянии от структурных генов (продукты регуляторных генов — репрессоры являются свободно диффундирующими белковыми молекулами). [c.119]

    Известна и детально изучена и обратная ситуация. В норме бактериальные клетки продуцируют набор белков, необходимых для превращения хоризмата в триптофан (см. рис. 115). Этот набор белков программируется пятью генами, расположенными в триптофановол1 опероне, схема которого представлена на рис. 128. При дефиците триптофана оперон нормально функционирует. Однако при появлении избытка триптофана он образует комплекс со специальным белком -апорепрессором, обладающим высоким сродством к операторному участку триптофанового оперона. В результате оперон целиком выключается. Это явление получило название репрессии В роли репрессора в данном случае выступает комплекс апорепрессора с триптофаном. [c.429]

    При клеточной дифференцировке, происходящей в процессе эмбрионального развития, транскрипция различных генов претерпевает последовательные изменения как качественного, так и количественного характера. Каждая стадия дифференциации включает в себя активацию очень большого числа структурных генов. Образование индивидуальных тканей связано с синтезом мРНК, которые кодируют белки, характерные для данной ткани. Несмотря на то. что во всех тканях одного и того же организма имеется полный набор хромосом и генов, в одних видах клеток наблюдается транскрипция тех генов, которые не транскрибируются в других. Это означает, что и в процессе дифференцировки и функционирования клеток должны существовать способы контроля транскрипции, необходимые для активации или репрессии определенных генов. Существует несколько принципиальных различий в условиях транскрипции у про- и эукариот количество ДНК у эукариот в расчете на клетку в несколько тысяч раз больше, чем у прокариот, и если у бактерии существует одна хромосома, то у эукариотических клеток гены распределены между разными хромосомами. Кроме того, в эукариотах транскрибируется хроматин, расположенный в ядре, а синтезированная информационная РНК транспортируется в цитоплазму, тогда как у бактерий ядра нет и синтезы РНК и белка не разделены в пространстве. [c.416]

    Эта реакция является ключевой для катаболитной репрессии - ингибирования (катаболитом) транскрипции генов, детерминирующих синтез ферментов, необходимых для катаболизма лактозы или других энергетических субстратов, когда в среде присутствует глюкоза - более эффективный источник энергии. Эта реакция широко распространена у факультативных и облигатных анаэробов, у которых единственный источник энергии - гликолизный путь. [c.54]

    Пунктирными линиями обозначены пути регуляции активности ферментов аллосте-рическими эффекторами, а также активности генов (транскрипция и трансляция). Знак минус указан в случае ингибирования и репрессии. Знак плюс - в случае активации и репрессии. Кружки соответствую прямому действию на ферменты, квадратики - репрессии или индукции синтеза ферментов. [c.461]


Смотреть страницы где упоминается термин Гены репрессия: [c.199]    [c.293]    [c.294]    [c.205]    [c.37]    [c.239]    [c.196]    [c.199]    [c.293]    [c.573]    [c.106]    [c.471]    [c.472]    [c.472]   
Основы биохимии Т 1,2,3 (1985) -- [ c.662 ]




ПОИСК







© 2025 chem21.info Реклама на сайте