Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутон

    Затем, в 1941 г., Макмиллан и американский физик Гленн Теодор Сиборг (род. в 1912 г.) получили и идентифицировали плутоний — элемент с порядковым номером 94. Группа ученых Калифорнийского университета, возглавляемая Сиборгом, на протяжении последующих десяти лет выделила более полудюжины элементов, в том числе америций (номер 95), кюрий (номер 96), берклий (номер 97), калифорний (номер 98), эйнштейний (номер 99) и фермий (номер 100). [c.175]

    Другая трудность заключалась в том, что не каждый атом урана, поглотивший нейтрон, претерпевает ядерное расщепление. Ядерному расщеплению подвергается довольно редкий изотоп — уран-235. Поэтому необходимо было разработать способы отделения и накопления данного изотопа. Это была беспрецедентная задача разделение изотопов в таких больших масштабах никогда ранее не проводилось. Исследования показали, что в этих целях можно использовать гексафторид урана, поэтому одновременно требовалось отрабатывать методику работы с соединениями фтора. После открытия плутония, который, как выяснилось, также подвергается ядерному расщеплению, было налажено производство его в больших количествах. [c.178]


    Самым мощным источником энергии является атомная энергия, которая в настоящее время успешно используется в силовых установках морских судов и на атомных электростанциях. Использование энергии ядерных процессов в авиационных двигателях, в первую очередь атомной энергии деления урана и плутония, считается делом ближайших лет. Преимущества атомной энергии колоссальны. Достаточно сказать, что в одном грамме урана-235 содержится примерно столько же энергии, сколько в двух тоннах керосина. Самолет весом 100—150 т, облетев со скоростью 2000 вокруг земного шара, израсходовал бы всего 0,5 кг урана-235. [c.96]

    В семейство актиноидов входят торий ТЬ, протактиний Ра, уран и, нептуний Мр, плутоний Ри, америций Ат, кюрий Ст, берклий Вк, калифорний СГ, эйнштейний Ез, фермий Рт менделеевий Мс1, нобелий N0 и лоуренсий Ег. В табл. 58 приведены основные характеристики атомов и ионов актиноидов и для сравнения даны сведения о радии, актинии и курчатовии. [c.647]

    Простые вещества. В виде простых веществ торий, протактиний, уран, нептуний, плутоний, америций, кюрий — серебристо-белые металлы с высокой плотностью и относительно высокими температурами плавления и кипения  [c.650]

    Соединения Э (VI). Степень окисления - -6 наиболее характерна для урана и может проявляться у нептуния, плутония и реже у америция. При этой степени окисления актиноиды напоминают d-элементы VI группы (подгруппа хрома). [c.653]

    На управляемых реакциях деления ядер (урана, плутония) основано действие ядерных реакторов. Расщепление ядер в атомных реакторах используется для производства энергии, получения трансурановых элементов, радиоактивных изотопов других элементов и и др. [c.661]

    При длительном облучении в ядерном реакторе урана-238 (Z = = 92) потоком нейтронов можно получить изотопы всех трансурановых элементов, вплоть до фермия Fin (Z = 100). Вначале образуется изотоп урана-239, который за счет З -распада превращается в изотоп нептуния-239 (Z = 93). Последний таким же образом переходит в изотоп плутония-239 (Z = 94)  [c.663]

    Изотопы плутония в свою очередь могут поглощать нейтроны и цепь (/г, 7)-реакций и 3 -распадов может продолжаться вплоть до образования фермия Fm (Z = 100)  [c.663]

    В недрах Земли обнаружены также ничтожные количества некоторых из синтезированных в лаборатории элементов (нептуния, плутония, технеция и др.). По-видимому, они существовали когда-то в значительных количествах, однако вследствие их неустойчивости давно исчезли, а встречающиеся в настоящее время на Земле образуются в результате ядерных реакций, вызываемых космическими лучами, или как продукты радиоактивного распада других элементов. [c.666]


    Все актиноиды радиоактивны. Торий, протактиний и уран встречаются в природе, так как у них имеются изотопы с большим периодом полураспада. В ничтожных количествах находятся в природе нептуний и плутоний. Остальные актиноиды получены искусственным путем в течение последних 30 лет (см. 37). [c.644]

    Многие синтетические изотопы, такие, как уран-233, плутоний-239 или калифорний 252, тоже подвергаются делению при облучении нейтронами. [c.338]

    Первые ядерные реакторы были разработаны во время второй мировой войны. Они производили плутоний-239 для атомной бомбы. Сейчас в США около 80 реакторов (подобных изображенному на рис. У.20), производящих [c.340]

    Плутоний-239 Стронций-90 Барий-140 Криптон-94 [c.358]

    Отходов от военных производств больше, чем от коммерческих. Кроме того, они жидкие, так как образуются при экстракции плутония из топлива, израсходованного реактором военного назначения (переработка использованного топлива гражданских реакторов в военных целях запрещена законами США). Так как изотопы в жидких отходах распадаются, они излучают радиацию и выделяют тепло, что еще больше усложняет проблему их захоронения. [c.358]

    В последние годы экстракция нашла широкое применение для разделения металлов и получения их в состоянии высокой чистоты. Во многих случаях она является единственным методом, который удается применить в промышленном масштабе, например, при очистке металлов, служащих топливом для атомных реакторов. Это относится как к металлам природного происхождения (уран, торий), так и к являющимся продуктами облучения (плутоний). С помощью экстракции разделяются также и другие металлы из семейства актинидов. С успехом решено разделение циркония и гафния, а также тантала и ниобия—металлов, встречающихся в природе всегда парами и, благодаря большому химическому подобию, трудных для разделения другими методами. Экстракцией можно выделить из отбросных продуктов промышленности (шлак, зола, шлам) содержащиеся в них следы различных металлов, имеющих важное техническое применение (германий, индий, церий и др.). [c.424]

    Экстракция урана и плутония из продуктов облучения в реакторе. Уран, применяемый в качестве реакторного топлива, подвергается изменениям, в результате которых образуется плутоний и сопутствующие ему продукты [383] (Ни, Хе, [c.433]

    Те, Сз, Ва). С целью выделения неиспользованного топлива и удаления примесей, отравляющих цепную реакцию, облученный уран через определенные промежутки времени подвергается переработке его растворяют в азотной кислоте и экстрагируют образовавшиеся нитраты органическими растворителями. В исходном растворе содержатся также и вспомогательные компоненты топлива 2г, ЫЬ, Сг и А1. Путем подбора соответствующих условий экстракции получается полное отделение урана и плутония от продуктов распада, а затем разделение урана и плутония, которые служат дальше топливом в реакторах различного типа. [c.433]

    Метилизобутилкетон не должен содержать более 1% органических примесей, так как увеличивается растворимость Сг и 2г. Коэффициент распределения урана и плутония между фазами улучшается в присутствии нитратов аммония, кальция, магния, натрия и аммония, а также азотной кислоты, повышение же температуры влияет неблагоприятно. Метилизобутилкетон растворяет в небольших количествах также 2г, N5, 11-238, Ки и Сг. Трибутилфосфат раство- [c.433]

    Для разделения урана и плутония путем экстракции существует ряд методов [352, 353]. [c.434]

    Аналогично ведут себя оксиды и гидроксиды урана (V), нептуния (V) и плутония (V). Для указанных элементов наиболее устойчивы в водных растворах производные сложных катионов типа ЭО , нанример UOj I, NpOjP, PuO. l. [c.653]

    В ряду и—Np—Ри—Ат устойчивость производных Э (VI) понижается. Так, для урана получен устойчивый оксид UOg (оранжевого цвета), для нептуния — лишь смешанный оксид NpgOf — нептунат (VI) нептуния (IV) Ыр(Ыр0 2. з оксид плутония [c.655]

    Соединения Э (VII). При действии активных окислителей (О.ч, СЮ, ВгО ) на сильнощелочные растворы оксонептунатов (VI) и оксо-плутонатов (VI) образуются соединения нептуния (VII) и плутония [c.655]

    Производные нептуния (VII) и в особенности плутония (VII) и америция (VII) проявляют сильные окислительные свойства. Имеются сообщения о получении производных Np(VIII) и Ru(VIII). [c.656]

    Цепными реакциями являются реакции деления ядер 2зэр и В процессе деления ядра урана или плутония, вызванного захватом нейтрона, происходит выделение некоторого числа (от двух до трех) нейтронов. Выделяющиеся нейтроны захЕ ЭТЫваются другими ядрами урана илн плутония, и при определенных условиях происходит деление последних. Каждый нейтрон может вызвать деление одного ядра урана или плутония. Поэтому число нейтронов, возникающих в результате деления, возрастает в геометрической прогрессии. Таким образом, если преобладающее число нейтронов деления может быть использовано для новых актов деления, наблюдается лавинообразное нарастание числа делящихся атомов и, следовательно, числа нейтронов и количества выделяющейся энергии, т. е. при этом происходит типичный разветвленный процесс, в котором роль промежуточного вещества играют нейтроны. Этот процесс и используется при получении атомной энергии. [c.205]


    Такнм образом, в результате облучения урана пемтронами были получены два трансурановых элемента — нептуний и плутоний [c.112]

    В 1964 г. группа учеи1> х, возглавлявшаяся академиком Г. Н. Флеровым, бомбардируя изотоп плутония "мРи ядрами неона 1Ме, получила изотоп элемента 104, названного кирчатовивм 1Ки)  [c.112]

    Кроме для нолумення ядерной энергии используют плутоний синтезируемый из П2), и изотоп урана получаем ,[й из природного и 10Т0иа тория [c.113]

    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]

    Схема экстракции по методу Редокс приведена на рис. 6-3-9 [353, 391]. Растворителем служит метилизобутилкетон, а высали вающим соединением А1(НОз)з. Для окисления плутония в сыреа вводится бихромат натрия МагСГаО,, количество HNOз меньше, чем необходимое для образования нитрата уранила, что обеспечивает низкий коэффициент распределения для примесей. Промывающей жидкостью в первой колонне служит раствор нитрата алюминия и бихромата натрия. Во вторую колонну вводится восстановитель и образуется Ри , нерастворимый в метилизобутилкетоне, благодаря чему уран и плутоний разделяются. Водный урановый экстракт после концентрации выпариванием еще раз очищается в двух последовательных колоннах. В конечном итоге содержание примесей в уране уменьшается в 10 —10 раз. Содержание Ри в и меньше десяти частей на биллион, а и в Ри— менее 1 %. Выход Ри и и более 99,5 %. [c.435]


Смотреть страницы где упоминается термин Плутон: [c.647]    [c.648]    [c.649]    [c.664]    [c.281]    [c.112]    [c.643]    [c.645]    [c.359]    [c.420]    [c.421]    [c.135]    [c.275]    [c.434]    [c.434]   
Прогресс полимерной химии (1965) -- [ c.211 ]

Прогресс полимерной химии (1965) -- [ c.211 ]

Пестициды и регуляторы роста растений (1995) -- [ c.301 ]

Происхождение жизни Естественным путем (1973) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Плутоний



© 2025 chem21.info Реклама на сайте