Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сканирования метод

    Сканирование — метод, близкий к перебору, но применяемый к непрерывным функциям. [c.262]

    Важнейшим моментом при использовании метода сканирования [c.514]

    Нетрудно получить оценку вычислительных затрат при применении метода сканирования. Так, в случае поиска оптимума целевой функции при условии, что точность определения положения этого оптимума равна А, т. е. искомые значения нормализованных переменных не должны отличаться от истинного положения оптимума на величину, большую, чем А, число рассчитываемых значений целевой функции составит  [c.513]


    Метод сканирования длителен, но осуществим для функции одной переменной- Если ж(з его применять для функции многих переменных, то число расчетов оказывается столь большим, а их осмысливание настолько затруднительным, что практическое использование этого метода становится, как правило, бессмысленным- Так, если у t (ж , и можно проверить каждый из х в р точках, то у придется определять раз для к переменных необходимо у опреде.лить р раз. [c.184]

    Известен ряд вариантов этого метода, позволяющих уменьшить вычислительную работу при сканировании. Можно, например, увеличить шаг поиска в 2 раз и проводить расчеты при крупных шагах 2 "е- Проводя расчеты, наблюдают за величиной у. Найдя широкую оптимальную область, начинают движение в ней, уменьшив шаг в два раза — до 2 - г. Всю процедуру повторяют до получения узкого интервала вблизи экстремума. Этот метод хотя и эффективнее простого сканирования, также весьма трудоемок- [c.179]

    Существуют различные модификации метода сканирования, применяемые в основном для сокращения объема вычислений. Одна из таких модификаций заключается в том, что используется алгоритм с переменным, шагом сканирования. Вначале величина шага выбирается достаточио большой, по возможности значительно превышающей требуемую точность определения положения оптимума, и вьшолняется грубый поиск, который локализует область нахождения глобального оптиму.ма. После того как эта область определена, производится поиск с меньшим шагом только в пределах указанной области. Практически можно организовать целый ряд таких процедур последовательного уточнения положения оптимума. Необходимый [c.513]

    Имеются и другие модификации метода сканирования, например сканирование по спирали (рис. 1Х-21), за счет чего также удается сократить объем р с. 1Х-21. Сканирование по вычислений. При этом можно иногда спирали. [c.514]

    Таким образом, результат при 852 °С наилучший. Учитывая, что экстремум при осуществлении химических процессов обычно является пологим, а также то, что ошибка в измерениях температуры близка к 10 °С, дальнейший поиск прекратим. Таким образом, поиск по методу золотого сечения потребовал проверки результата всего в четырех точках. При использовании сканирования потребовалась бы проверка результатов в И точках, отстоящих друг от друга на 20 °С. [c.219]

    Поиск осуществляют методом сканирования по ряду точек, характеризующих время назначения ремонтов (/р , ip P) или время проведения профилактик tn в зависимости от типа стратегии. [c.252]

    Интерактивный режим позволяет пользователю выбрать вариант постановки задачи термоэкономической оптимизации (из заданной пользователем совокупности критериев оптимальности и соответствующих наборов оптимизирующих переменных) выбрать варианты расчета технологических подсистем (по уровню детализации моделей) выбрать вариант расчета каждой из энергетических подсистем (эксергетическая производительность подсистемы, обобщенная термоэкономическая модель подсистемы данного типа, традиционная математическая модель) выбрать метод безусловной оптимизации из имеющихся в библиотеке и задать его параметры выбрать и задать параметры метода условной оптимизации применить метод декомпозиционной релаксации, сократив число оптимизирующих переменных провести выборочное сканирование области поиска по одной или группе переменных выбрать варианты печати результатов моделирования в начальной и конечной точке поиска, промежуточных результатов оптимизации. [c.418]


    Метод сканирования заключается в последовательном вычислении критерия оптимальности в ряде точек, принадлежащих области изменения независимых переменных, и нахождении среди этих точек такой, в которой критерий оптимальности имеет наименьшее (наибольшее) значение. [c.387]

    К недостаткам метода относится необходимость вычисления критерия для большого числа точек. Последнее обстоятельство существенно ограничивает возможности использования метода сканирования. Практически этим методом могут решаться задачи, для которых число независимых переменных не превышает 2—3, кроме того, расчет одного значения критерия не требует большого объема вычислений. [c.387]

    КИМ образом, вместо N параметров ищутся всего два параметра 0, СС2- Поиск параметров 0 , 7 , б , 0, 2, обеспечивающих минимум функционала, можно вести различными методами градиентными, случайного поиска, сканированием. [c.189]

    После уточнения первичных оценок параметров к, п с помощью метода сканирования, примененного в виду малости числа параметров (двух), зависимость (3.270) для скорости зародышеобразования приобрела вид [c.320]

    Для решения экстремальной задачи уровня А—задачи выбора оптимального показателя надежности ХТС — используют метод сканирования по ряду предварительно задаваемых значений уровня надежности системы. Каждое новое значение показателя Р( + )(Х) задается в результате коррекции предыдущей его величины по полученному из соотношения (3.4) значению глобального критерия Згод- [c.226]

    На рис. 1.8 приведена блок-схема алгоритма оптимального расчета колонны с учетом приведенных затрат. Оптимизация осуществлялась методом сканирования с переменным шагом. Метод заключается в последовательном просмотре значений критерия оптимальности в ряде точек, принадлежащих области независимых переменных, и нахождении среди этих точек такой, в которой критерий оптимальности принимает минимальное значение. Этот метод позволяет определить глобальный экстремум функции. При этом задаются диапазоном изменения - скорости пара на полное сечение колонны W и флегмового числа Л - с соответствующим шагом. В процедуре расчета критерия оптимальности на каждом шаге определяется число тарелок и тарелка ввода питания в виде отдельной процедуры проектного расчета колонны. [c.70]

    В первоначальных расчетах был использован один из наиболее простых и надежных методов оптимизации — метод сканирования [66], который гарантировал нахождение глобального оптимума. Использование алгоритма поиска на сетке переменных Со и Шп с переменным шагом сканирования свело решение к просмотру значений себестоимости очистки (или себестоимости рекуперируемого бензина) при заданном значении одной переменной (ш)п) для ряда значений другой переменной (со), которые определялись как отстоящие друг от друга на величину шага Асо. После того как весь диапазон изменения Со при заданном значении Wп был исследован и для него было найдено минимальное значение С (себестоимости), осуществлялось изменение значения на величину шага Ли п. На первом этапе величина шага была выбрана достаточно большой (Дсо = 4 г/м Ашп = = 0,05 м/с), значительно превышающей требуемую точность определения оптимума, т. е. выполнен грубый поиск, который локализовал область нахождения глобального оптимума. Затем был произведен поиск с меньшим шагом (Асо = 1 г/м Wn = = 0,01 м/с), но в более узкой области. [c.176]

    Минимизация функций. Методы сканирования, золотого сечения. Многомерная минимизация. Спуск по координатам. Метод фадиента. 2 [c.158]

    Контроль сплошности основного металла (в объеме от 15 до 30%) сосудов и трубопроводов ультразвуковым методом в соответствии с [100, 103, 114-116] и специальными методиками, учитывающими специфику развития водородного расслоения, проводят в зонах шириной 200 мм по обе стороны от контролируемых сварных швов и ПОУ. Остальные зоны обследуют согласно карте контроля. УЗК основного металла конструкции осуществляют с помощью прямого раздельно-совмещенного преобразователя (частота 4-5 МГц, рабочий диаметр не более 18 мм) путем многократного дискретного линейного сканирования дефектного участка конструкции в продольном направлении с шагом не более 20 мм. В области контура дефекта и в примыкающей к ней зоне шириной 100 мм шаг сканирования не должен превышать 10 мм. При малых размерах дефектов в плане (менее 50 мм) и их условной высоте более 20% толщины стенки конструкции проводят сплошное сканирование. Условные линейные размеры протяженных (более 50 мм) дефектов определяют с точностью не менее одного шага сканирования, а глубину их залегания — не менее 0,3 мм. [c.162]

    Для минимизации функции Ф (ai, 2, , а,п) используются в основном поисковые методы оптимизации (метод сканирования, метод покоординатного спуска, метод градиента, метод наиско-рейшего спуска, метод Уилсона — Бокса и др., см. гл. X и [32]). [c.372]

    Названием методы нелинейного программирования объединяется большая группа численных методов, многие из которых приспособлены для репгения оптимальных задач соответствующего класса. Выбор того или иного метода обусловлен сложностью вычисления критерия оптимальности и сложностью ограничивающих условий, необходимой точностью решения, мощностью имеющейся машины и т. д. Ряд методов нелинейного программирования практически постоянно используется в сочетании с другими методами оптимизации, как, например, метод сканирования (см. главу IX, стр. 551) в динамическом программировании. Кроме того, эти методы служат основой построения систем автоматической оптими- [c.33]


    Таким образом, число вычислений критерия оптимальности при определении положения оптимума методом сканирования возрастает в показательной зависимости от размерности решаемой задачи. Поэтому эффективное применение данного метода в основном 01 ра-ничивается задачами невысокой размерности я 2 — 3, если используется простейший алгоритм поиска, рассмотренный выше, для отыскания оптимума с невысокой точностью. [c.513]

    Метод сканирования. Если е — наименьшее изменение, которое приводит к ощутимому изменению у, то область поиска з тах—а т1п МОЖНО разбить на (Хщах—1 интервалов и исследовать у на границе каждого интервала- Сравнивая найденные значения у, выберем из них оцтимальное. Такой метод называют сканированием (обеганием). Он прост в постановке, позволяет точно определить положение экстремума, но требует очень длительной вычислительной работы. [c.179]

    Исследована структура осадков песка с размером частиц около 600 мкм методом оптического сканирования микрошлифов [187]. Осадки получены на обычном фильтре диаметром 90 мм и на фильтре с поршнем диаметром 75 мм в качестве жидкой фазы использована эпоксидная смола с вязкостью 1,4 Н-с-м- . В опытах на обычном фильтре осадки образованы путем фильтрования при постоянной скорости под давлением сжатого воздуха и путем седиментации. В экспериментах на фильтре с поршнем осадок образован двумя способами разделением суспензии песка в эпоксидной смоле под вакуумо.ч с последующим механическим сжатием осадка поршнем (влажный осадок) сжатием поршнем сухих частиц песка с последующим фильтрованием смолы через осадок (сухой осадок). По окончании опытов через осадок фильтровалось вещество, полимери-зующее смолу, твердые осадки разрезались алмазной пилой в продольном и поперечном направлениях, шлифовались алмазной пастой и шлифы исследовались. Установлена разница в структуре осадков, полученных при обычном фильтровании, седиментации и на фильтре с поршнем. Отмечено, что влажный осадок, полученный на фильтре с поршнем, существенно отличается по своей структуре от осадка, полученного на обычном фильтре при одинаковой разности давлений. Возможность использования результатов опытов на фильтре с поршнем для практических расчетов поставлена под сомнение. Значение приведенного исследования состоит в том, что в опытах на обычном фильтре и на фильтре с поршнем было устранено влияние многих искажающих факторов, поскольку изучался по существу чисто гидродинамический процесс с использованием достаточно крупных частиц округлой формы. [c.182]

    В качестве первой исследуемой системы выбирались раствор и кристаллы алюмоаммонийных квасцов. Система уравнений, описывающая движение, рост кристалла совместно с явлениями тепло-и массообмена (следствие из системы (1.58)), решалась для двух значений температур (вариант I—7 i=--293K варпант II—7 j= = 295 К при Сц=126 кг/м в обоих вариантах) при различных начальных значениях масс кристаллов (0,5—1,2 мг). Неизвестными являлись кинетический коэффициент е и параметр Ua в (1.251). Неизвестные параметры определялись из сопоставления экспериментальных и расчетных данных по скорости осаждения, методом сканирования в достаточно широком диапазоне значений. Для всех вариантов величины параметров (е = 43,8 см/с f7<.= 13 250 Дж/ /моль) совпали (относительная ошибка менее 8%). Одинаковые величины объясняются независимостью параметров е и от массы кристаллов. Коэффициент B vd, где < - 10 см, v s[10 — [c.80]

    Существует ряд методов решения задач одномерной оптимизации общий поиск (метод сканирования), деление интервала пополам, дихотамии, золотого сечения, метод Фибоначчи [83]. [c.232]

    По методу [58] ПО мл топлива окисляют в стеклянном стакане с обратным холодильником (прибор ГОСТ 20449—75) этапами по 6 ч (всего 24 ч). После каждого этапа определяют оптическую плотность топлива (прибор ФЭК-М) и снимают его спектр в инфракрасной области на приборе UR-20 в кюветах с толщиной слоя топлива < = 0,4 мм при следующих условиях скорость сканирования 160 см /мин, щелевая программа 4, призма Na l и LiF. По окончании испытания (через 24 ч) анализируют топливо по тем же показателям, определяя дополнительно и другие (содержание смолы, кислотность и т. д. можно все эти показатели определять и по мере окисления топлива по этапам). Примерные кинетические кривые окисления очищенных топлив и ИК-спектры окисленного топлива показаны на рис. 30. [c.92]

    Утомительная процедура определения размеров частиц и их подсчет с помощью микроскопа либо электромикрографии была упрощена с развитием двух методов автоматического определения размеров и подсчета частиц. Первый из них основан на мехаяиче-оком сканировании образца с фотоэлектрическим определением и со скоростными счетчиками частиц [578, 579] второй включает в себя сканирование пробы оветовы(М пятном от электронно-лучевой трубки, обнаружение имнульса света, отраженного от каждой отдельной частицы, с помощью фотоэлемента [287] и регистрация импульса на счетчике. [c.93]

    Одновременно используя некоторые из этих методов, Сикка [144] смог выявить некоторое молекулярное упорядочение при однородной усталости. При циклическом растяжении он вызывал утомление тонких пленок (толщиной 0,075 мм) полистирола ( трайсайт ) и поликарбоната. Затем он исследовал эти пленки методами ИК-спектроскопии с разверткой фурье-спектра (ИКФР) и механической спектроскопии, а также методом дифракции рентгеновских лучей. Утомленные образцы ПС исследовались путем сканирования на электронном микроскопе с целью обнаружения трещин серебра, которые могли [c.295]


Смотреть страницы где упоминается термин Сканирования метод: [c.511]    [c.511]    [c.511]    [c.512]    [c.512]    [c.523]    [c.22]    [c.58]    [c.185]    [c.216]    [c.33]    [c.185]    [c.49]    [c.62]    [c.5]    [c.163]    [c.101]   
Методы оптимизации в химической технологии издание 2 (1975) -- [ c.34 , c.510 ]




ПОИСК







© 2025 chem21.info Реклама на сайте