Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бронзы электрические свойства

    Приведенные сведения указывают на то, что гальваническое покрытие белой бронзой по своиМ электрическим свойствам уступает серебряному и медному покрытиям. Однако при работе в среде, содержащей сернистые соединения, переходное сопротивление бронзовых покрытий более стабильно, чем серебряных. [c.99]

    Калиевые бронзы легко получить действием иаров металлического калия на оксид ШОз. В этом случае решеткой (матрицей) будет оксид ШОз, имеющий структуру типа КеОз, в которой вольфрам занимает октаэдрическое положение, а атомы натрия занимают вершины соответствующих кубов (рис. 39). Область существования вольфрамовых бронз простирается только от. У = 0,2б до. 2 = 0,93. Физико-химические свойства зависят от содержания катионов. С их увеличением повышается электрическая проводимость. [c.101]


    На основе меди изготовляют различные сплавы бронзы — с содержанием цинка менее 4% латуни — с содержанием цинка более 4%. Легирующие элементы упрочняют медь, резко снижают ее тепло- и электрическую проводимость. Наименьшее влияние на эти свойства оказывает хром — хромистые бронзы БрХ-0,8. [c.385]

    При сочетании донорных и акцепторных ингибиторов возникают наиболее благоприятные условия для образования прочных хемосорбционных пленок как на отрицательно заряженных металлах или участках металлов (катодах, энергетических тиках), так и на положительно заряженных металлах или участках металлов (анодах, энергетических ямах) с последующей защитой хемосорбционных пленок более толстыми слоями ингибиторов коррозии адсорбционного типа (структура сэндвича ). Хемосорбционно-адсорбционные пленки часто имеют упорядоченную, доменную структуру и по своим электрическим и диэлектрическим свойствам приближаются к полупроводникам. Важно, что в двигателях и механизмах анодными участками по отношению к стали, как правило, становятся детали из цветных металлов и сплавов — меди, бронзы, магниевых, алюминиевых сплавов и др. В случае макрообъектов на таких металлах можно ожидать преимущественной сорбции ингибиторов донорного действия, которые защищают цветные металлы от коррозии, а не усиливают ее как акцепторные ингибиторы 120, 104]. [c.75]

    Известны кислотоупорные сплавы, содержащие цирконий, никель, кремний и железо. Сплавы циркония с медью конкурируют по качеству с бериллиевыми бронзами и применяются для электрических проводов в тех случаях, когда требуется высокая механическая прочность провода. Это объясняется тем, что цирконий значительно повышает механические свойства меди, лишь незначительно снижая ее электропроводность. [c.204]

    Практическое применение находят почти все металлы или в чистом виде, или в виде сплавов друг с другом. Их использование определяется свойствами самих металлов и сплавов. Наиболее широко применяют железо и алюминий, а также их сплавы (главы IX и X). Чистая медь имеет большую электропроводность, уступающую только серебру, и применяется для изготовления электрических проводов и радиотехнической аппаратуры. Сплавы меди с цинком называют томпаками (до 10% 2п) или латунями (10—40% 2п), а с другими металлами — бронзами. Алюминиевые бронзы (5—11% А1) обладают высокой коррозионной стойкостью и золотистым блеском служат для изготовления лент, пружин, шестерен и художественных изделий. Кремнистые бронзы (4—5% 51) обладают высокими механическими и антикоррозионными свойствами. Их применяют в химической промышленности для изготовления сеток, проводов, трубопроводов. [c.131]


    Недостатбк ионов металла в окисле металла типа ВО может способствовать тому, что зарядность некоторых ионов металла повышается (как в Fei j. 0). Введение иона с более низкой заряд-ностью на место металла в окисле дает тот же эффект (нанример, замещение переходного металла в его окисле литием). Наличие металлических ионов в местах нормальных вакансий также влияет на свойства решетки- хозйина (например, вольфрамовые бронзы щелочных металлов). Темой этого раздела будет влияние дефектов такого вида на электрические свойства нестехиометрических соединений. [c.263]

    Высокооловянистую бронзу применяют для замены серебра при гальваническом покрытии некоторых типов контактов [28]. В этом случае следует учитывать электрические свойства покрытия, в особенности его электросопротивление. [c.98]

    Контактные крючки, штыри и пружины, на которые крепятся детали, рекомендуется делать из проволоки изфосфористой бронзы. Упругие свойства этого материала обеспечивают хороший электрический контакт и надежно удерживают деталь на подвеске. [c.191]

    ИЗОПОЛИКИСЛОТ, существуют соединения, называемые гетерополикислотами, которые содержат группы МоОе или ШОе, окружающие центральный атом другого элемента. Простым примером является ион ТеМОб024, структура которого состоит из шести октаэдров МоОб, обобществляющих ребра таким образом, что возникает кольцо вокруг центрального атома Те, причем последний опять-таки оказывается окруженным октаэдром из атомов О. Более сложным примером является ион РШ1204 , в котором октаэдры 0в обобществляют ребра друг с другом и с центральным тетраэдром РО4 с образованием остова, имеющего результирующую тетраэдрическую симметрию. Более простые структуры имеют вольфрамовые бронзы. Они получаются при восстановлении УОз действием или в присутствии щелочных металлов или некоторых одновалентных металлов, например Си. Соединения, имеющие общую формулу Мх Юз, имеют различные структурные и электрические свойства и даже различаются по внешнему виду (желтые, красные, фиолетовые) в зависимости от природы и концентрации металла. В натриевых бронзах X может иметь почти все значения от О до 1. При х больше 0,4 бронзы имеют кубическую структуру (атомы — в вершинах куба, атомы О — вдоль, ребер и атомы N3 — в центрах некоторых кубов). При значениях х меньше 0,4 возникает аналогичная, но менее симметричная тетрагональная структура. Более тяжелые щелочные металлы дают бронзы с гексагональной симметрией с атомами щелочного металла в гексагональных каналах, образованных октаэдрами ЩОв- [c.229]

    Среди этих металлов по техническому значению первое место занимает медь. Мировая добыча меди составляет свыше 4,4 млн. т. В больших количествах медь 99,9%-ной чистоты используется в электротехнике (электрические провода, контакты и др.). Сплавы меди применяют в различных областях техники и промышленности в суде-, авиа-, авто-, станко- и аппаратостроении, для художественнога литья, изготовления посуды, фольги и пр. Содержание легирующих добавок может доходить до 50%. Добавки повышают твердость и прочность, устойчивость по отношению к коррозии, пластичность и другие свойства. Если основным легирующим металлом в сплаве с медью является цинк, то такие сплавы называются латунями, никель — мельхиорами и нейзильберами, другие легирующие добавки — бронзами. Из бронз наибольшее значение имеют оловянистая, свинцовая алюминиевая, бериллиевая, марганцовая, фосфористая. [c.158]

    При непрерывном изменении состава вольфрамовых бронз непрерывно меняются и их свойства. Чем ближе х к единице (Ь аЦ/Оз), тем сильнее выражены металлические свойства. Так, соединение Ызо эШОз обладает золотистым цветом, характерным металлическим блеском, высокой электрической проводимостью и теплопроводностью, что н дало основание назвать эти соединения бронзами, хотя ничего общего со сплавами на основе меди эти фазы не имеют. По мере уменьшения содержания катионообразователя свойства становятся все более неметаллическими, вплоть до проявления диэлектрического характера у ШОд. Структурными единицами кристаллов вольфрамовых бронз являются радикалы ШОз, образующие кубическую решетку. В пустотах кристаллической решетки находятся внутренние атомы катионообразователя (Е1, Ма, К, КЬ, Сз, Са, Ва, Т1, РЬ). Ионизация внутренних атомов приводит к делокализации электронов в пределах всей решетки, что формально снижает степень окисления вольфрама пропорционально содержанию катионообразователя. Наличие делокализованных электронов и придает кристаллу металлические свойства. [c.343]

    Сплавам можно придать многие свойства, ценные в техническом отношении. Например, дюралюмин по легкости приближается к алюминию, а по твердости — к стали. Широко практикуют в технике добавки к сплавам редких элементов. Когда к обычной стали добавляют немного бора (тысячные доли процента), она приобретает сходство с никелевой или хромовой сталью. Электрическая проводимость бе-риллиевой бронзы выше, чем у чистой меди. Вольфрамовые стали и сплавы пригодны для изготовления сверхтвердых резцов. Добавки титана сообщают сплавам стойкость к действию кислот, пластичность, прочность, износоустойчивость. [c.267]


    На преждевременный износ серебряного покрытия влияет металл (сплав) и конструкция пружин, обеспечивающих постоянство удельного давления при стыковке контактов. Так, пружины, изготовленные из бронз, в процессе длительной эксплуатации деталей теряют свои упругие свойства, поэтому их приходится дополнительно обжимать, обеспечивая некоторый запас усилий, который способствует преждевременному износу серебра. Бронзовые пружины не коррозионно-стойкие, поэтому их покрывают серебром, что также вызывает дополнительные расходы серебра. Целесообразно бронзовые пружины заменять пружинами, изготовленными из сплава К40НХМ или ЭП-52, которые обеспечивают стабильность усилий при стыковке электрических соединений и ие требуют дополнительного покрытия серебром. [c.174]

    Название бронз дается по основным легирующим элементам. Наиболее распространены оловянистые (до 10 % Зп), алюминиевые (9—10 % А1), кремнистые (15 % 31), марганцовистые (4— 8 % Мп) и другие бронзы. Все они имеют примерно одинаковую коррозионную стойкость, приближающуюся к чистой меди, но в зависимости от легирующих элементов характеризуются широким спектром электрических, механических, антифрикционных, технологических свойств. У сплавов меди с более электроотрицательными элементами так же, как и у латуней, наблюдается псевдоселективная коррозия, связанная с обратным осаждением меди. Содержание электроотрицательного компонента в бронзе, при котором начинается осаждение меди, зависит от природы и электродного потенциала легирующего элемента. Ниже приведены данные для бронз, испытанных в 0,1 н. НС1 при 20 °С  [c.220]

    Известны также фосфатные токопроводящие клеи, отверждающиеся при комнатной температуре [20]. В состав клея входят порошкообразная металлическая медь, окислы металлов и фосфатное связующее. Из окислов можно использовать uO, U2O, MgO, ZnO (обожженный при 1200°С). В качестве связующего применяют Н3РО4 различных концентраций и магнийфосфатное связующее. Высокой электропроводностью характеризуются клеи,содержащие в составе наполнителя не менее 40% порошкообразной меди. Их удельное объемное электрическое сопротивление составляет Ю " Ом-м и не изменяется при температурах до 200°С. Дальнейшее нагревание приводит к окислению меди и, соответственно, к потере токопроводящих свойств. Наибольшую прочность имеют клеи, в состав которых наряду с порошкообразной медью входит uO. Они имеют хорошую адгезию к титану, бронзе, латуни. Разрушающее напряжение клеевых соединений этих металлов при равномерном отрыве составляет 15—20 МПа. [c.183]

    Фирма Дженерал Электрик выпускает прозрачные покрытия для электрических лампочек. Такое покрытие пропускает более 95% светового потока и препятствует разлетанию осколков при поломке выдерживает действие льда, снега, дождя, искр и т. п. Оно хорошо соединяется с шеллачными, нитроцеллюлозными, перхлор-вини ловыми покрытиями [662]. Отечественный компаунд КЛТ-50 достаточно надежно прикрепляется к стеклянным, эмалевым, силикатным покрытиям, фарфоровым частям электроприборов [663]. С применением подслоя К-100 адгезия к стали, алюминию, меди, бронзе, титану, хрому, никелю, олову, свинцу, органическому стеклу, капрону, графиту и другим конструкционным материалам заметно улучшается. Заливочный двухкомпонентный компаунд КЛСЕ успешно применяется для изоляции паяных соединений обмоток, роторов и статоров, электрогенераторов корпусов электрических машин. Его используют также для заливки статорных обмоток электродвигателей А-81-4, применяемых для насосов маслонапорных установок. Указанный компаунд с успехом заменил такой традиционный изоляционный материал, как слюда. Он более технологичен, уменьшает температурный перепад в изоляции, обладает хорошими механическими и диэлектричоскйми свойствами. [c.76]

    Благодаря своим преимуществам алюминиевая бронза в настоящее время очень широко применяется в рассматриваемой области. Она обладает великолепным сопротивлением коррозии и хорошими теплопроводными свойствами. Потребителями этого материала был поднят вопрос о возможности гальванического действия, имеющего обратное направление и возникающего в случае нахождения изделий из алюминиевой бронзы в стальном резервуаре. Но весьма сомнительно, чтобы мог возниквуть противоположный эффект значительной силы. Отношение анода к катоду настолько высоко, и морская вода так хорошо проводит электрический ток, что плотность последнего должна быть, очевидно, величиной весьма низкого порядка. Исходя из личного опыта, я не заметил какого-нибудь разрушительного действия на стальные плиты или фермы от близко расположенных труб из алюминиевой бронзы. Разумеется, если в этом имеется необходимость, алюминиевая бронза может быть изолирована от стали. Однако степень этой изоляции не должна быть столь безупречной, как это требуется по условиям сооружения алюминиево-стальных конструкций. [c.450]


Смотреть страницы где упоминается термин Бронзы электрические свойства: [c.80]    [c.252]    [c.156]    [c.128]    [c.213]    [c.353]    [c.367]    [c.234]    [c.260]    [c.353]    [c.234]    [c.315]    [c.431]    [c.179]    [c.671]    [c.315]   
Нестехиометрические соединения (1971) -- [ c.264 ]




ПОИСК





Смотрите так же термины и статьи:

Бронзы

Электрические свойства



© 2024 chem21.info Реклама на сайте