Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромовая сталь, определение

    Для определения фосфора в образце стали берут две навески по 0,15 мг углеродистой или низколегированной стали, помещают каждую в коническую колбу емкостью 100—125 мл, добавляют 5 мл разбавленного раствора азотной кислоты и нагревают до полного растворения пробы. (При анализе некоторых хромовых сталей, кроме азотной кислоты, добавляют еще 3 мл соляной кислоты 1 1.) Пипеткой добавляют 5 мл раствора хлорной кислоты. Осторожно выпаривают до появления паров и после этого продолжают нагревание 3—5 мин до удаления азотной кислоты. Охлаждают, и, если сталь содержит более 0,05% мышьяка, добавляют 5 мл разбавленного раствора бромистоводородной кислоты и осторожно выпаривают до удаления НВг, переводят в мерные колбы емкостью 25 мл и доводят объем раствора водой до метки. Берут две порции по 10 мл из каждой колбы, помещают растворы в конические колбы емкостью 50 мл, добавляют в каждую по 15 мл раство- [c.140]


    Метод погружения. Применим для определения пористости никелевых, хромовых, оловянных покрытий на стали. Используют раствор состава  [c.274]

    Правило Митчерлиха в свое время оказало большую услугу при определении атомных масс. Так, когда был открыт изоморфизм сернокислых и хромовокислых солей, стало ясно, что хромовый ангидрид и серный ангидрид имеют одинаковые формулы SO3 и СгОд, а отсюда атомная масса хрома 52. [c.156]

    Преимущественное растворение того или иного компонента из сплава не всегда определяется термодинамикой, иногда решающее значение оказывают кинетические особенности процесса. Так, твердые растворы системы Ре — Сг (хромистые стали Х13, Х18) в серной кислоте при потенциалах отрицательнее (рис. 118) растворяются преимущественно за счет менее благородного хрома. Поверхностный слой обогащается железом. При потенциалах положительнее ф хромовая составляющая пассивируется и преимущественно уже растворяется железо, а хром накапливается в поверхностном слое. Когда концентрация хрома достигает определенных значений, зависящий от концентрации кислоты, ее аэрации, температуры и т. д., происходит пассивирование сплава. При потенциалах положительнее фг вновь преимущественно растворяется хром. [c.214]

    Метод погружения применим для определения пористости никелевых и хромовых покрытий на стали для деталей малогабаритных, сложной конфигурации При контроле используется раствор состава  [c.60]

    Применяют для фотометрического определения Си в сталях, в сплавах железа, ферротитане, никеле, молибденовом концентрате, серебре, хромовых электролитах. Используют 0,2 %-ный водный раствор. [c.186]

    Приготовление раствора хромового ангидрида с серной кислотой. Растворяют 40 г хромового ангидрида в 60 мл воды при размешивании и понемногу приливают 40 мл концентрированной серной кислоты. Раствор применяют для окисления SO2 до SO3 при определении углерода в чугунах и сталях. [c.323]

    Этилксантогенат калия применяют для обнаружения молибдена в сталях [188, 242, 407, 438, 659, 837, 1247, 1452, 1544], минералах [5, 142, 374, 1000], рудах [5, 1253], а также для полу-количественного определения молибдена в хромово-никелевых сталях [568]. [c.109]

    Магний в чугуне можно определять также фотометрическим методом с титановым желтым [259]. Железо и некоторые примеси отделяют бензоатом натрия. При содержании 0,02—0,05% магния относительная ошибка метода в пределах 10—20%. Об определении магния с титановым желтым в углеродистых и низколегированных сталях, а также в сплавах на хромовой основе см. в [13]. [c.209]


    Замечательные кислотные и окислительные свойства хлорной кислоты делают ее очень ценным реактивом для химического анализа. Она применяется при окислении органических соединений в присутствии воды и для определения хрома в нержавеющей стали или в коже хромового дубления" . В последнем случае действием на кожу горячей хлорной кислоты сначала разрушают органические примеси, а затем окисляют хром до бихромата. Далее раствор охлаждают и разбавляют, после чего бихромат можно определить титрованием раствором двухвалентного сернокислого железа, так как разбавленная холодная кислота не проявляет окислительных свойств. [c.30]

    Уиллард и Гибсон предложили методику определения хрома и ванадия в хромитовых рудах и сталях. Они сообщили, что хром и ванадий могут быть полностью окислены кипящей 70%-ной хлорной кислотой до хромовой и ванадиевой кислот. Хром отделяли от ванадия, марганца и железа осаждением в виде хромата свинца из 1 М раствора хлорной кислоты. [c.122]

    Контроль проникающей жидкостью (капиллярный метод). Этот метод рекомендуется использовать только тогда, когда метод магнитных частиц нельзя применить, т. е. для контроля немагнитных материалов, таких, как аустенитные стали и алюминиевые сплавы. Для определенных алюминиевых сплавов анодирование хромовой кислотой может служить Б качестве обычного испытания проникающей жидкостью для определения трещин [49]. [c.297]

    В особых случаях может оказаться целесообразным нрименять другие методы разложения, как, например, растворять сталь в растворе хлоридов меди и калия для предварительного отделения углерода или при определении углерода в алюминии проводить мокрое сжигание обработкой серной и хромовой кислотами, как описано в разделе Определение общего содержания углерода, ,мокрым сжиганием (стр. 856). Для определения в органических веществах таких компонентов, как галогены, сера, фосфор и азот, анализируемую пробу можно окислить дымящей азотной кислотой при высоких температурах и давлениях в запаянной стеклянной трубке 1. [c.847]

    Когда этот прибор применяется для поглощения окислов серы при определении углерода в сталях прямым сжиганием в токе кислорода, его левую часть неплотно заполняют асбестом, а в правую часть наливают серную кислоту, насыщенную хромовым ангидридом. [c.849]

    В США нашел широкое применение метод испытания в горячей азотной кислоте с добавками фторидов и без них. Этим методом выявляется в основном склонность к межкристаллитной коррозии, обусловленная выделением сигма-фазы. Использование его для определения склонности нержавеющих сталей к межкристаллитной коррозии в любых средах химической промышленности часто приводило к неправильному выбору материала. Это объясняется тем, что продукты взаимодействия азотной кислоты с нержавеющими сталями, например хромовая кислота, ускоряют процесс коррозии. Наблюдались случаи, когда стали, не выдержавшие испытания в горячей азотной кислоте, успешно эксплуатировались в химических производствах. Испытания в серной кислоте с сернокислой медью давали в этих случаях более согласующиеся результаты. Испытания в горячей азотной кислоте, очевидно, более приемлемы для сталей, пред- [c.246]

    Описанный метод определения хрома имеет большое практическое значение. Именно так определяют хром в хромовых рудах, сталях, ферросплавах, шлаках и т. п. [c.389]

    Определение углерода ведется, аналогично определению в стали, сжиганием хромовой и серной кислотами в колбе С о г 1 е i s a или сухим методом, по методу М а г s a,— сжиганием в кислороде или, лучше, в токе воздуха (см. т. II, ч. 2, вып. 2, стр. 107 и ПО).  [c.13]

    Отгонка хрома в виде хромилхлорида — наиболее часто применяющийся метод его отделения. Так как хромилхлорид легко восстанавливается в солянокислом растворе хлористым водородом, реакцию проводят в присутствии окислителя — хлорной кислоты [674, 1803], например при определении хрома в феррохроме, хромовых сталях и т. д. Метод применен Эвин-гом и Бэнксом [751] для анализа ТЬ — Сг-силавов. Определение тория и хрома производится из отдельных навесок. Абсолютная ошибка определения 0,17—0,32 2 ТЬ в присутствии 0,5 г Сг составляет 0,2 мг. [c.148]

    Комплексы Сг(П1) с фосфорной и пирофосфорной кислотами имеют одинаковые спектрофотометрические характеристики ( шах = 440 и 640 нм) [414]. Предел обнаружения 0,04 мг1мл. Мешают определению N (11) и Со(П) при соотношении Сг Ме = = 0,2 1 и > 1 1 соответственно. Метод применяют при анализе хромовых руд, феррохрома, концентратов и сталей. Определение следовых количеств хрома проводят путем измерения оптической плотности раствора комплекса Сг(1П) с азид-ионом при 440 нм. Закон Бера справедлив в пределах 4—320 мкг мл. Окраску Си(П), Ре(1П), иО " устраняют введением ЭДТА [1040]. Для спектрофотометрического определения Сг(1П) используют комплексное соединение K г[Fe( N)gOH] [873]. [c.42]


    Разработано несколько методов амперометрического определения железа [2, 8, 19, 21]. В случае окрашенных или мутных растворов Ре титруют амперометрически с двумя индикаторными электродами [2]. Этот метод пригоден для определения железа в металлическом никеле, в феррохроме и хромовых сталях [8]. [c.239]

    Определение фосфора в контрольном образце стали. Навеску 50 мг углеродистой или низколегированной сталп помещают в коническую колбу емкостью 125 мл, добавляют 5 мл разбавленной азотной кислоты и нагревают до полного растворения пробы. (При анализе некоторых хромовых сталей, кроме азотной кислоты, добавляют еще 3 мл соляной кислоты 1 1.) Пипеткой добавляют 3 мл хлорной кислоты. Осторожно выпаривают до появления паров и после этого продолжают нагревание 3—5 мин до удаления азотной кислоты. Охлаждают и, если сталь содержит более 0,05% мышьяка, добавляют 5 мл разбавленной бромистоводородной кислоты и осторожно выпаривают до удаления бромистого водорода, К охлажденному хлорнокислому раствору добавляют 10 мл воды и 15 мл раствора сульфита. Раствор нагревают до кипения и продолжают кипятить около 30 сек, охлаждают и переносят в мерную колбу на 50 мл, применяя минимальное количество воды для споласкивання. Добавляют 20 мл реагента молибдат аммония — гидразпн-сульфат. Разбавляют до метки дистиллированной водой и перемешивают. Погружают колбу на 10 мин в кипящую водяную баню, вынимают и быстро охлаждают. Если необходимо, прибавляют несколько капель воды до метки. Измеряют оптическую плотность при Л 830 ммк и кювете I = см относительно аналогично приготовленного раствора из одинаковой навески и тех же количеств реагентов, но с прибавлением 5 мл 10 и. серной кислоты вместо 5 мл молибдата. [c.197]

    По поводу определения кремния в специальных сталях следует заметить, что для хромовой стали наиболее пригоден метод 2, и не пригод( ы 1 и 5. Фильтрат во всех случаях надо выпаривать еще раз ускоренные методы не рекомендуются. [c.90]

    Посторонние металлы, кроме хрома и кобальта, ни в какой мере не влияют на результаты. В присутствии хрома определению момента конца титрования препятствует желтое вкрашивание, а в присутствии кобальта этому мешает розовый цвет раствора. Так как хромовые стали ке сполна растворяются в азотной кислоте, серебряно-персульфатный метод для определения в них марганца не применяется. [c.129]

    Кулоиометрнческин метод применяют для измерения местной толщнны однослойных и многое Т10ЙНЫХ покрытий, главным образом, никелевых, а также отдельных ime многослойных покрытий Хорошие результаты получены также прн определении толщины серебряных покры-тий на бронзе и подслое олова, топких хромовых покрытий на стали. Предел измерения этим методом 0,1—100 мкм, погрешность 5—7 %. [c.273]

    Антифрикционные свойства. Зависимость коэффициентов трення от величины нагрузки при трении стали по бронзе никель фосфорному н хромовому покрытиям приведена на рис 6 Как видно из приведенных кривых, возрастание коэффициента трения для никель фосфорных покрытий наблюдается прн повышении нагрузки свыше 6 О, а для хромовых покрытий после 6,5 МПа Довольно низкие коэффициенты трения ннкель-фосфорных покрытий объясняются, в частности, их хорошей прирабатываемостью Приме нение смазочного материала существенно снижает силу трения Важное значение имеет определение максимальных нагрузок до заедания, выдерживаемых никель фосфорными покрытиями Эти характеристики получены при использовании машины трения 77МТ 1 в условиях возвратно-поступательного движения при смазке маслом АМГ 10 и комнатной температуре Величина предельных нагрузок до заедания выдерживаемых никель фосфорными покрытиями существенно возрастает после часовой термообработки в интервале температур 300— 750 °С и доходит до 42 МПа [c.15]

    Пассивирующие грунтовки чаще всего содержат хроматные пигменты — соли хромовой кислоты хроматы стронция, бария, кальция, цинка, свинца. Хроматы являются самыми распространенными пассиваторами. Даже при незначительных концентрациях хроматов в электролите металлы переходят из активного в пассивное состояние. Это можно проиллюстрировать на примере пассивации стали (рис. 8.1). Даже в агрессивном электролите (0,1 н. N82804) можно полностью подавить коррозионный процесс, если ввести в него хромат определенной концентрации, получившей название защитной. Потенциал стали при этом сильно смещается в сторону положительных значений (на 0,5—0,6 В), что может служить косвенным доказательством сильных пассивирующих свойств хроматов. [c.126]

    Определение хрома в сталях и хромовых сп.павах проводят методом обратного титрования избытка раствора соли Мора раствором КМПО4 до появления устойчивой бледно-розовой окраски [823]. Показана возможность определения V (V), r(VI) и e(IV) в их двух- и трехкомпонентиых смесях [1062]. Избыток ионов Fe(II) титруют раствором e(S04)2 в 7,0—8,5 М СН3СООН в присутствии индикатора ферроина. [c.32]

    Фотометрическое определение i(IIl) с ЭДТА используют при анализе металлического ниобия [455], сталей и алюминиевых сплавов [799, 902, 933], горных по-)од [122], хромистого железняка 466], хромовых руд и храмсодержащих огнеупорных кирпичей [605]. [c.49]

    Основным преимуществом титриметрического метода является быстрота выполнения анализа. Метод неоднократно усовершенствовали [72, 158, 416, 428, 513, 1125] он дает удовлетворительные результаты и широко применяется до настоящего времени для определения концентраций фосфора выше 0,02%. Описано опре-. деление фосфора титриметрическим фосфоромолибдатным методом в сталях и чугунах 40, 74, 94, 104, 210, 249, 257, 263, 375, 376, 483, 550, 573, 599, 878, 885, 1057, 1099], рудах черных и цветных металлов [104, 225, 298, 301, 356, 379, 844], силикоцирконии, силикохроме, хромистом железняке [19], медных сплавах [263], фтористом, церии [1159], электролите для латунирования [244], фосфоритах [234], моющих средствах [670, 671], нефтепродуктах [228], вине [607]. Описано определение фосфорной кислоты в присутствии серной и хромовой кислот [631], ортофосфата в присутствии конденсированных фосфатов [509], фосфора в органических веществах [231, 997]. [c.32]

    Выполнение определения. Навеску 0,2 г чугуна или стали в виде мелких стружек растворяют при нагревании в 10 мл разбавленной серной кислоты (1 9) в стакане емкостью 100 мл. При растворении навески к раствору прибавляют по каплям азотную кислоту (пл. 1,4) до прекращения вспенивания раствора, сопровождающегося выделением бурых паров окислов азота, и продолжают умеренно кипятить до полного удаления NOg. При этом в растворе не должно оставаться темного осадка неразложившихся карбидов. Если это на-блюдается,то к раствору необходимо прибавить еще азотной кислоты или кристаллического (NH4)2S20g и продолжать нагревание до полного растворения карбидов. К кипящему раствору прибавляют 2—3 мл (или больше) 1 %-ного раствора КМПО4 до появления заметной фиолетовокрасной окраски для окисления Сг в хромовую кислоту и продолжают 336 [c.336]

    Хром очень широко распространен в природе. Его местонахождение почти полностью ограничивается ферромагниевыми породами, главным образом с высоким содержанием магния и низким содержанием кремния и, следовательно, изобилующими оливинами, как перидотит и дунит. Он встречается в виде хромита FeGrgOi и пик отита (Fe, Mg) ( r, Al)a04 (хромовой шпинели). Хром находится также в некоторых авгитах, биотитах и оливинах. В горных породах может содержаться до 0,5% СгаОд. В природе известны также немногие хроматы и некоторые содержащие хром силикаты. Однако эти минералы встречаются сравнительно редко. Хром является обычным компонентом многих промышленных продуктов, главным образом чугунов и сталей, которые только в редких случаях не содержат хрома. Поэтому методы его определения имеют важное значение. [c.589]

    Д. Уоррен и Г. Бэкман [390] исследовали поведение болтов из стали А151 4140 (состав в % 0,41 С 0,80 Мп 0,20 51, 0,87 Сг 0,12 Мо) после термообработки на различную твердость. Болты в напряженном состоянии подвергались воздействию влажного сероводорода при температурах 20—1120°С и давлениях НоЗ 0,1 — 1,7 МПа (1 —17 ат). Если твердость болтов была менее Яде = 27, то разрушения болтов не происходило даже при напряжениях, близких к пределу пропорциональности. При твердости стали Ядк = 27-ь55 склонность к растрескиванию была тем больше, чем выше твердость. Для каждой твердости стали существует определенное минимальное напряжение, начиная с которого болты растрескиваются, это напряжение уменьшается по мере роста твердости. Повышение температуры усиливает растрескивание, а изменение давления НгЗ не оказывает влияния. П. Бастьен с сотр. [391] нашли, что наименьшую склонность к растрескиванию в водном растворе НгЗ, подкисленном уксусной кислотой до pH 3,2—3,9, конструкционная хромово-молибденово-ванадиевая сталь (0,09— 0,19 С 2,5 Сг 1,0 Мо 0,25 V) проявляет после отпуска ее при высокой температуре, когда сталь приобретает структуру глобулярного цементита. Рост содержания углерода в этой стали в интервале 0,09—0,19% Приводит к увеличению предела пропорциональности, до которого сталь может быть доведена термообработкой, без увеличения склонности стали к растрескиванию. Скорость коррозии при увеличении содержания хрома от 2 до 12% уменьшается, но склонность к растрескиванию мало изменяется. Сплав, содер-.жащий 9% Сг, особенно склонен к растрескиванию в растворе сероводорода. [c.144]

    Мухина 3. С. и Сударчикова Т. И. Полярографическое определение в хромовой ванне хрома как основного элемента и меди, железа и свинца как примесей. Тр. № 117 (М-во авиац. пром-сти СССР). [М.], Оборонгиз, 1949, с. 1—3. 4876 Мухина 3. С. и Сударчикова Т. И. Определение малых количеств цинка в сплавах на хромоникелевой основе [колориметрическим и полярографическим методами]. В сб. Новые методы химического анализа сталей и сплавов. [М.], Оборонгиз, 1952, с. 42— 46. 4877 Мызникова С. Л. Быстрый метод анализа полуды. [Открытие и количественное определение свинца]. Виноделие и виноградарство СССР, 1948, № 2, с. 33. 48 8 [c.190]


Смотреть страницы где упоминается термин Хромовая сталь, определение: [c.115]    [c.245]    [c.47]    [c.47]    [c.425]    [c.267]    [c.161]    [c.190]    [c.350]    [c.136]   
Химико-технические методы исследования (0) -- [ c.90 ]




ПОИСК





Смотрите так же термины и статьи:

Хромовая



© 2025 chem21.info Реклама на сайте