Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

влияющие факторы металлов при низких температура

    Выявленная закономерность позволяет оценить запас вязкости металла при низких температурах путем непосредственного сравнения с вязкостью его при комнатной температуре ( + 20 °С). На полученных кривых для некоторых металлов и сплавов отмечается порог хладноломкости — температурный интервал, в котором резко снижается ударная вязкость металла. Наиболее отчетливо порог хладноломкости выявляется для ферритных и мартенситных сталей. Ударная вязкость ряда металлических материалов понижается плавно, а для отдельных металлов (медь, алюминий) она сохраняет достаточно высокое значение вплоть до температур жидкого гелия (—270 °С). Следует учитывать, что на вязкость материала в значительной мере влияют такие факторы, как кристаллическая структура, термообработка, загрязнения, а также вид прилагаемой нагрузки. На рис. 44 показана зависимость ударной вязкости от температуры для некоторых металлов. [c.133]


    Интенсивность спектральной линии при постоянных условиях пропорциональна количеству введенных в пламя атомов элемента или концентрации соли металла в анализируемом растворе. Однако в реальных случаях эта зависимость может нарушаться вследствие протекания в пламени процессов самопоглощения, ионизации и образования термически устойчивых соединений. На рис. 1.13 представлена зависимость интенсивности спектральной линии от концентрации элемента в растворе. При средних содержаниях определяемого элемента в растворе эта зависимость линейна. Для больших содержаний сказывается влияние самопоглощения эмиссии атомов в плазме и в этом случае интенсивность излучения спектральной линии пропорциональна корню квадратному, из концентрации элемента в растворе. При очень низких концентрациях элемента и высокой температуре плазмы проявляется процесс ионизации его атомов и интенсивность излучения спектральной линии пропорциональна квадрату концентрации. В обоих случаях градуировочный график искривляется. Кроме процессов, указанных выше, на ход графика влияет ряд других факторов, поэтому определение элементов в методе фотометрии пламени проводят с использованием серии растворов сравнения. Они должны содержать все вещества, входящие в состав исследуемого раствора, и фотометрироваться в одинаковых с ним условиях. [c.37]

    Вулканизаты резины под влиянием ряда складских и эксплуатационных факторов, действующих изолированно или чаще комплексно, изменяют свои технически ценные свойства — снижается эластичность, происходит затвердевание, появляются хрупкость, трещины, изменяется окраска. Влияние кислорода воздуха, и в особенности озона, ведет к старению и утомлению резины. Этому также способствуют тепло и свет, напряжения, возникающие при статическом или динамическом нагружении, нерациональное складирование, агрессивные среды или каталитическое действие солей металлов (в частности, на резины из НК влияют соли марганца и меди). Низкие температуры ведут к снижению эластичности резины, к появлению хрупкости. Эти изменения для напряженных резин на основе кристаллизующихся каучуков возрастают с длительностью охлаждения. Однако с возвращением к комнатным температурам первоначальные свойства восстанавливаются. [c.9]

    Таким образом, с увеличением удельной поверхности, радиуса и объема пор активность катализатора повышается. Однако существует верхний предел пористости катализатора, который определяется механической прочностью таблетки. При любой данной пористости радиус пор и удельная поверхность не является независимыми переменными увеличение одного из этих параметров сопровождается снижением второго. Поэтому наиболее эффективный катализатор получается в результате некоторого компромиссного сочетания перечисленных факторов. Однако высокая начальная активность отнюдь не означает, что данный катализатор является оптимальным для процесса Галф . Необходимо, чтобы этот катализатор подавлял образование отложений кокса и металлов. Для более глубокого понимания механизма образования эгих отложений было проведено исследование их природы и скоростей образования. На рис. 7 показана зависимость образования отложений кокса на катализаторе от продолжительности работы катализатора при гидрообессеривании Галф кувейтского вакуумного гудрона, из которой можно определить скорость образования кокса на катализаторе. Очевидно, что из всего количества кокса, отложившегося на катализаторе за 16 суток работы, 50% образовалось за первые 12 ч. Из этих кривых видно также, что повышение парциального давления водорода снижает равновесный выход кокса и, таким образом, повышает равновесную активность. Однако одно только парциальное давление водорода не предотвращает быстрого начального образования кокса оно лишь снижает количество кокса, отлагающееся на катализаторе. Температура также влияет на образование кокса даже при температуре на 56° ниже нормальной температуры процесса, когда достигаемая степень обессеривания низка, наблюдается быстрое образование кокса в начальный период, правда, в несколько меньшей степени. При повышении температуры для достижения требуемой степени обессеривания количество кокса увеличивается до того же равновесного уровня. [c.120]


    Интересно влияние излучения на кристаллы. При поглощении рентгеновских лучей галогенидами щелочных металлов и другими кристаллами наблюдается характерное окрашивание. Хлористый натрий становится желтым, а хлористый калий — голубым, причем окраска обусловлена поглощением света электронами, которые были выбиты рентгеновскими лучами и захвачены вакансиями отрицательных ионов кристаллической решетки. Когда облученный кристалл нагревают, захваченные электроны высвобождаются, и при возвращении на более низкий уровень энергии они испускают свет. Это явление известно как термолюминесценция. Если кристалл нагревают медленно, то в ряде случаев испускается свет при определенных температурах. На характер кривых зависимости интенсивности излученного света от температуры влияют продолжительность облучения, присутствие примесей и другие факторы. Некоторые породы и минералы, такие, как известняк и флюорит, проявляют термолюминесценцию даже без предварительного облучения, потому что они содержат следы радиоактивного урана порядка нескольких миллионных долей. [c.556]

    Использование для ускорения коррозии повышенной температуры допустимо при учете других факторов. Фактор температуры влияет на время контакта электролита с металлом, при этом коррозионные эффекты могут быть низкими в области воздействия высоких температур (Средняя Азия). Поэтому применение температурного фактора с целью ускорения процесса коррозии возможно с учетом фактора увлажнения поверхности. [c.23]

    В общих чертах механизм трения твердых полимеров сходен с механизмом трения металлов, однако необходимо учитывать влияние продолжительности действия нагрузки, температуры и других факторов на физико-механические свойства полимеров [43]. В результате низкой теплопроводности полимеров уже при малых скоростях скольжения могут развиваться высокие температуры, которые будут влиять на физико-механические свойства и структуру материалов в поверхностном слое. [c.13]

    Пока рост пленки окалины контролируется процессом прохождения ионов сквозь эту пленку, некоторое различие между химическим составом стали в одной части поверхности и другой не должно влиять на скорость окисления, пленка должна быть почти равномерной по толщине, коррозионное разрушение стали происходит равномерно это наблюдается в случае котлов низкого давления. Как только скорость процесса начинает контролироваться реакцией, происходящей на границе раздела фаз, действие факторов, благоприятствующих образованию окалины, равномерной по толщине, прекращается действительно, поверхность металла под толстым слоем окалины, образующейся при высокой температуре, становится неровной в ней появляются многочисленные углубления, имеющие форму блюдца. [c.406]

    Коэффициент теплопроводности данного материала зависит от многих факторов. Небольшое количество примесей в чистом металле приводит к значительным иотерям теплопроводности. Облучение быстрыми нейтронами может вдвое и даже больше уменьшить теплопроводность металлов или керамических материалов. Как видно из рис. З.Ь температура существенно влияет на коэффициент теплопроводности. Давление оказывает слабое влияние на теплопроводность газа, содержащегося в пористых материалах, до тех пор, пока межзерен-иые промежутки не станут меньше среднего пути свободного пробега молекул газа. Как показано на рис. 3.2, влияние давления становится существенным при давлениях ниже примерно 10 мм рт. ст. 6]. При низких температурах, когда тепловые потоки излучения малы, молено обеспечить надежную теплоизоляцию путем откачивания газа из пространства между двумя полированными поверхностями до давления 0,01 мм рт. ап. или менее. Еще лучшие термоизоляционные свойства можно получить, заполнив вакуумированный промежуток между поверх юстями отражающим изоляционным мате ) налом. Исключительно хорошими теплоизоляционными свойствами обладает многослойная теплоизоляция, применяемая для криогенного оборудования. Она состоит из нескольких тысяч перемежающихся слоев алюминиевой фольги и пластиковой пленки или стеклянной ткани толщиной в сотые доли миллиметра. Откачивая пространство между слоями, можно получить коэффициент теплопроводности при криогенных температурах до 1,73-10" вт1 м-град). [c.40]

    Вблизи атомов растворенного вещества в результате различия объемов атомов этого вещества и растворителя или различия электронной плотности возникают значительные области повышенной подвижности растворителя. На диффузионную подвижность особенно влияю р наследственные дефекты и, следовательно, структура металла. Границы зерен, трубки дислокаций являются путями повышенной подвижности. Таким образом, металл пронизан подобными путями. Существенно, что границы зерен соединены друг с другом и образуют в металле как бы сеть путей повышенной подвижности. Энергии активации диффузии по таким путям, естественно, заметно меньше, чем в объеме зерна. Однако в предэкспоиенциаль-ный фактор Оо входит лишь определенная доля сечения этих путей от всего сечения металла. Поэтому и Е, и Оо в областях повышенной подвижности меньше. Так как в этих областях Е имеет меньшую величину, то вклад в общий поток диффузии по ускоренным путям будет более значительным при низких температурах, когда скорость диффузии в середине зерна мала. Вследствие этого при достаточно высоких температурах суммарный процесс диффузии определяется диффузией по объему зерен, а при низких — по границам зерен. Это проявляется на температурной зависимости коэффициента диффузии. При больших значениях 1/Т (область низких температур) угол наклона прямой линии в координатах [c.204]


    Это влияние составляющих топлива на коррозию металла в общем одинаково как для железного, так и д.ля нике.левого сплавов с той разницей, что величина коррозии в несколько раз больше для железного сплава. Условия испытания влияют на величину коррозии обоих сплавов. Рабочая температура оказалась особенно важной, и из фиг. 6 и 7 виден характер влияния этого фактора. Заметное увеличение скорости коррозии и интенсивности образования отложе-нг1И, которые имеют место при температурах выпхе точки плавления пятиокиси ванадия или смесей его с другими комнонеитами золы, уже отмечалось. Результаты отчетливо показывают, что это изменение скоростей имеет место при температуре около 650° на лабораторных установках и на газовой турбине. То обстоятельство, что и температура и количество золы, прошедшей через турбину, оказывают влияние на коррозию, становится очевидным из рассмотрения результатов, но,лученных при 725 и 765°, приведенных на фиг. 7. В связи с атмосферными условиями более низкая температура приводит к повышенному расходу топлива. Общее влияние этих двух факторов таково, что и коррозия и образование отложенш остаются на одном, и том же уровне [c.193]

    Влияние остаточных сварочных напряжений на коррозионное растрескивание. При отсутствии активных сред влияние остаточных напряжений на разрушение определяется в первую очередь деформационными свойствами металла и характером напряженного состояния величиной, жесткостью схемы напряжений и длительностью нагружения. Эти факторы определяют хрупкий или пластический характер разрушения. Влияние остаточных напряжений возрастает по мере перехода от пластических форм разрушения, т. е. разрушений, характеризующихся значительной средней пластической деформацией, предшествующей разрушению, к хрупким формам разрушения с малой средней пластической деформацией. При кратковременных испытаниях пластических материалов достаточно малых величин пластических деформаций, чтобы произошла релаксация остаточных напряжений, поэтому на фоне значительной общей деформации значение релаксационных деформаций мало. В случае низкой деформационной способности материала, вызванной как внутренними факторами (низкая исходная пластичность материала, снижение пластичности вследствие закалочных явлений, деформационного старения, насыщения вредными примесями и др.), так и внешними (жесткая схема напряжений, низкие температуры и др.), остаточные напряжения, суммируясь с эксплуатационными, неблагоприятно влияют на прочность. Роль остаточных напряжений увеличивается с уменьшением величины рабочих напряжений и с увеличением длительности испытаний. При длительных испытаниях, при повторно-статических нагружениях, которые характеризуются весьма малым значением общей пластической деформации и локализацией деформации в концентраторах, роль остаточных напря- [c.125]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]

    Если в печи нагревают материал, характеризуемый низкой излучательной способностью и высокой теплопроводностью, толщина материала не влияет на расход топлива, поскольку тепло, поглощенное поверхностью материала, передается внутрь его при незначительном перепаде температур. Примером такого положения является нагрев алюминия. С другой стороны, если излучательная способность материала высока, а его теплопроводность низка, как у стали, толщина влияет на расход топлива по следующей причине у толстостенного материала, который должен быть нагрет до заданной средней температуры, поверхность горячее, чем внутренние слои, и поэтому продукты сгорания при той же скорости нагрева до той же редней температуры должны уходить из печи при более высокой температуре, чем в случае нагрева тонких изделий. И наоборот, если газы должны уходить из печи при одной и той же температуре, независимо от толщины садки, то толстостенный 1атериал должен находиться в печи дольше, чем тонкостенный (ср. с рис. 68). Другими словами это положение можно выразить так скорость нагрева должна быть снижена, в результате чего потеря тепла через стенки на единицу массы нагреваемого металла повышается. Если нагреваемый материал легко окисляется, то возникают другие факторы. Окалина характеризуется большей излучательной способностью, чем светлый металл. В первоначальных стадиях нагрева окалина способствует поглощению тепла однако толстый ее слой, образующийся при продолжительном нагреве толстостенного материала, служит изолятором, что в свою очередь приводит к тому, что материал должен находиться в печи дольше. А если нагревальщик пытается повысить скорость нагрева, увеличивая подачу тепла, то окалина размягчается, становится блестящей и отражает тепло. Это означает, что ее излучательная способность уменьшается. [c.189]

    Главная трудность в турбидиметрии и нефелометрии — определение условий, при которых можно получить воспроизводимые по свойствам суспензии. На поглощение или рассеяние света могут резко влиять небольшие изменения в способе добавления осадителя, в температуре и времени, проходящем до наблюдения. От этих факторов зависит первоначальный и последующий размеры частиц осадка. Кроме того, большое влияние могут оказывать электролиты. Малорастворимые вещества сильно отличаются по их пригодности для применения в турбидиметрии и нефелометрии. Желательно, чтобы осадок был очень мало растворим, чтобы его образование шло быстро и чтобы он был окрашен или непрозрачен (последнее — для турбидиметрии). Оптическая плотность коллоидных растворов часто изменяется линейно в зависимости от концентрации вещества в широких пределах, особенно если вещество сильно поглощает свет. Это соотношение не соблюдается при очень малых концентрациях. Коллоидные растворы теллура, получаемые осаждением хлоридом олова (И), коллоидное золото (стр. 459), соединение серебра с диэтиламинобензилиденроданином, ферроцианид меди и суспензии сульфидов многих тяжелых металлов показывают линейное соотношение в значительной области концентраций. При определении на суспензиях хлорида серебра получается более сложная форма кривой экстинкция—концентрация (стр. 735). При колориметрических определениях, основанных на образовании лаков, при которых реактив (краситель) адсорбируется на поверхности осадка с изменением окраски, часто обнаруживается, что при низких концентрациях определяемого элемента имеется практически линейное соотношение между экстинкцией и концентрацией. Этого и следовало ожидать, так как при большом избытке реактива поверхность осадка насыщается им, и тогда в определенных пределах интенсивность окраски пропорциональна концентрации коллоидного осадка. Если соотношение [c.111]


Смотреть страницы где упоминается термин влияющие факторы металлов при низких температура: [c.1478]    [c.1478]   
Разделение воздуха методом глубокого охлаждения Том 2 (1964) -- [ c.525 , c.558 ]




ПОИСК





Смотрите так же термины и статьи:

влияющие фактор



© 2025 chem21.info Реклама на сайте