Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никелевые сплавы стойкости

    МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80  [c.156]


    Основное содержание справочника составляют таблицы коррозионной стойкости. В первой графе таблиц приводится наименование материала, процентный состав его (по массе) и марка отечественного материала, близкого к нему по составу (указывается в скобках). Если материал выпускается промышленностью, то указывается только его марка, а состав определяется соответствующими ГОСТами. Условия предварительной термической или механической обработки материалов, если они известны, указываются в примечании или рядом с маркой материала. Материалы располагаются в следующем порядке. Вначале идут металлические материалы, которые начинаются с железа и железных сплавов как наиболее широко применяющиеся в практике. Затем следуют в алфавитном порядке наиболее распространенные металлы и сплавы алюминий и его сплавы, магний и его сплавы, медь и ее сплавы, никель и никелевые сплавы, титан и титановые сплавы. После этого в алфавитном порядке размещаются другие металлы и их сплавы. В последней части таблиц приводится химическая стойкость неметаллических материалов (по алфавиту). Скорость коррозии металлов и сплавов характеризуется потерей массы ( , г/м .ч) или глубинным показателем коррозии (/г , мм/год). Длительность коррозионных испытаний приводится в примечаниях или в отдельном столбце таблицы. Продолжительность испытания оказывает влияние на скорость коррозии (в частности, на среднюю скорость коррозии). Как правило, при более длительных испытаниях средняя скорость коррозии становится меньше. Большое влияние на скорость коррозии могут оказать перемешивание среды и примеси. В таблицах, по возможности, отмечены эти особенности. [c.4]

    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]

    В быстродвижущихся водах алюминиевая латунь более стойка к ударной коррозии, чем адмиралтейский металл. Медно-никелевые сплавы обладают особо высокой стойкостью в быстро движущейся морской воде, если они содержат небольшие количества железа [c.339]


    Ценные свойства проявляют медно-никелевые сплавы. Они имеют серебристо-белый цвет, несмотря на то что преобладающим компонентом в них является медь. Сплав мельхиор (массовая доля никеля 18—20%) имеет красивый внешний вид, из него изготавливают посуду и украшения, чеканят монеты. В сплав нейзильбер кроме никеля и меди входит цинк. Этот сплав используется для изготовления художественных изделий, медицинского инструмента. Медно-никелевые сплавы константан (40% никеля) и манганин (сплав меди, никеля и марганца) имеют высокое электрическое сопротивление. Их используют в производстве электроизмерительных приборов. Характерной особенностью всех медно-никелевых сплавов является их высокая стойкость к коррозии. Широкое применение в машиностроении, химической промышленности, в производстве бытовых товаров нашли латуни — сплавы меди с цинком (массовая доля цинка до 50%). Латуни — дешевые сплавы с хорошими механическими свойствами, легко обрабатываются. Для придания латуням особых свойств в них часто добавляют алюминий, никель, кремний, марганец и другие металлы. [c.251]

    Медно-никелевый сплав обнаружил повышенную для трубных материалов скорость коррозии (до 0,12 г/м в час) при ее неравномерном характере. Использование для этих целей мельхиора, обладающего высокой коррозионной стойкостью (0,004—0,025 мм/год), экономически оправдано лишь в случае невозможности замены другим материалом. [c.115]

    Следует отметить также, что сплавы, упрочненные выделениями, относятся к числу типичных структур, в которых происходит разрезание выделений дислокациями. Это явление хорошо изучено [123, 126, 285]. Как и в случае сплавов на основе Ре, содержащих у -выделения, возникающее планарное скольжение вполне может коррелировать с плохой стойкостью к водородному охрупчиванию [124, 125]. Степень несоответствия решеток матрицы и 7 -фазы в рассматриваемых сплавах бывает различной [274, 276, 285], а несоответствие матрицы и у" может быть большим [277, 290]. Таким образом, в никелевых сплавах с достаточно большим несоответствием решеток матрицы и выделений может существовать зависимость типа показанной на рис. 22 [126], при условии отсутствия нежелательных зернограничных слоев т] пли Ь. продолжение работ, основанных на таких представлениях, может дать ценные результаты. [c.117]

    Легирование никеля молибденом в значительной степени повышает его стойкость в восстановительных средах. Как в аэрированных, так и в деаэрированных кислотах эти сплавы имеют потенциалы коррозии более отрицательные, чем их Фладе-потен-циалы [4, 5], т. е. по определению 1 в гл. 5 их нельзя считать пассивными. Так, все коррозионные потенциалы никелевых сплавов с 3— 22,8 % Мо в насыщенном водородном 5 % растворе НзЗО не отличаются более чем на 2 мВ от потенциала платинированного платинового электрода в том же растворе [4]. Несмотря на отрицательные значения коррозионного потенциала, сплав, содержащий, например, 15 % Мо, корродирует в деаэрированном 10 % [c.361]

    Никель применяется главным образом для получения сплавов с другими металлами, отличающихся коррозионной стойкостью, высокими механическими, магнитными, электрическими и термоэлектрическими свойствами. Никель и его сплавы используют в химическом машиностроении, в электротехнике, для изготовления точных и электроизмерительных приборов, хирургических инструментов, монет, предметов широкого потребления. Особенно большое значение имеют жаропрочные и жаростойкие никелевые сплавы. В последние годы сплавы никеля используются в конструкциях атомных реакторов. [c.158]

    Никелевые сплавы отличаются хорошей коррозионной стойкостью, высокими механическими качествами, жаропрочны и т. д. [c.551]

    Полученные в лабораторных условиях результаты хорошо совпадают с данными по стойкости графитовых кристаллизаторов в условиях непрерывной разливки медно-никелевых сплавов. [c.123]

    Коррозионной стойкости тугоплавких металлов в различных агрессивных средах, значительно превосходящей стойкость нержавеющих сталей и никелевых сплавов (хастеллоев), посвящено очень много работ. Этими вопросами занимались и металловеды, и химики, и коррозионисты. [c.47]

    Еще одним интересным моментом является отрицательное влияние равновесных интерметаллических соединений на стойкость сталей, титановых, никелевых сплавов и в некоторых случаях нержавеющих сталей к водородному охрупчиванию. В алюминиевых сплавах интерметаллидные включения играют косвенную положительную роль, но могут оказывать и прямое отрицательное воздействие. Поскольку выделение этих соединений может отрицательно сказываться также на вязкости и других свойствах, то его предупреждение является, как правило, полезным, за исключением тех случаев, когда присутствие интерметаллидов необходимо для упрочнения материала. [c.120]

    Никель — хром. Прекрасная коррозионная стойкость группы сплавов на основе никеля, известных под названием Инконель, объясняется главным образом наличием в их составе 15—22 % Сг. Составы различных сплавов никель — хром, а также других никелевых сплавов, собранных в три группы в соответствии с их коррозионной стойкостью, представлены в табл. 27. [c.78]

    Химический состав сплавов, из которых сделаны канаты, приведен в табл. 158, а их коррозионное поведение —в табл. 159. У канатов с номерами 15, 18, 19, 20, 21, 22, 41 (экспозиция в течение 751 сут на глубине 1830 м), 48—53 видимой коррозии не было. Канат номер 15 из нержавеющей стали марки 316, модифицированной добавками кремния и азота, экспонировался в течение 189 сут на глубине 1830 м. Проволочный канат номер 41, сделанный из обычной нержавеющей стали марки 316, не корродировал в течение 751 суг экспозиции на глубине 1830 м. Однако этот же канат был покрыт ржавчиной и подвергся щелевой коррозии (а некоторые из его внутренних проволок были порваны) после 1064 сут экспозиции. Временное сопротивление каната при 1064 сут экспозиции на глубине 1830 м уменьшилось на 41 %. Так как обычная нержавеющая сталь марки 316 также не корродировала в течение первых 751 сут экспозиции, то нельзя утверждать, что добавки кремния и азота в сталь марки 316 улучшают ее коррозионную стойкость. Канаты с номерами 18—21 изготовлены иэ никелевых сплавов. Канаты с номерами 20 и 21 не корродировали в воде и когда они лежали на донных осадках или были в них погружены. Канат номер 22 был из сплава на основе кобальта, он также не [c.411]


    Пресные и особенно слабосрленые воды в большей степени влия -ют на коррозионную усталость стали, чем на медь. Нержавеющая сталь и никель или никелевые сплавы также более устойчивы, чем углеродистая сталь. В целом, склонность металла к коррозионной усталости в большей степени определяется его коррозионной стойкостью, чем механической прочностью. [c.158]

    Легирование никеля медью несколько повышает стойкость металла в восстановительных средах (например, в неокислительных кислотах). Ввиду повышенной стойкости меди к питтингу, склонность сплавов никель—медь к питтингообразованию в морской воде ниже, чем у никеля, а сами питтинги в большинстве случаев неглубокие. При содержании более 60—70 ат. % Си (62—72 % по массе) сплав теряет характерную для никеля способность пассивироваться и по своему поведению приближается к меди (см. разд. 5.6.1), сохраняя, однако, заметно более высокую стойкость к ударной коррозии. Медно-никелевые сплавы с 10—30 % N1 (купроникель) не подвергаются питтингу в неподвижной морской воде и обладают высокой стойкостью в быстро движущейся морской воде. Такие сплавы, содержащие кроме того от нескольких десятых до 1,75 % Ре, что еще более повышает стойкость к ударной коррозии, нашли применение для труб конденсаторов, работающих на морской воде. Сплав с 70 % N1 монель) подвержен питтингу в стоячей морской воде, и его лучше всего применять только в быстро движущейся аэрированной морской воде, где он равномерно пассивируется. Питтинг не образуется в условиях, когда обеспечивается катодная защита, например при контакте сплава с более активным металлом, таким как железо. [c.361]

    Сплавы меди с никелем подразделяют на конструкционные и электротехнические. К конструкционным относятся Мельхиоры и нейзиль-беры. Мельхиоры содержат 20—30% никеля и небольшие количества железа и марганца (остальное — медь), а нейзильберы содержат 5— 35% никеля и 13—45% цинка (остальное — медь). Благодаря высокой коррозионной стойкости конструкционные медно-никелевые сплавы широко применяются в энергетике. Из них изготовляют радиаторы, трубопроводы, дистилляционные установки для получения питьевой воды из морской. К электротехническим медно-никелевым сплавам относятся константан (40% N1, 1,5% Мп, остальное Си) и манганин (3% N1, 12%Мп, остальное Си), которые отличаются своим высоким электрическим сопротивлением, не изменяющимся с температурой. Они идут на изготовление магазинов сопротивления. К электротехническим относится и сплав копель (43% N1, 0,5% Мп, остальное Си), применяемый для изготовления термопар. [c.306]

    Сплавам можно придать многие свойства, ценные в техническом отношении. Например, дюралюмин по легкости приближается к алюминию, а по твердости — к стали. Широко практикуют в технике добавки к сплавам редких элементов. Когда к обычной стали добавляют немного бора (тысячные доли процента), она приобретает сходство с никелевой или хромовой сталью. Электрическая проводимость бе-риллиевой бронзы выше, чем у чистой меди. Вольфрамовые стали и сплавы пригодны для изготовления сверхтвердых резцов. Добавки титана сообщают сплавам стойкость к действию кислот, пластичность, прочность, износоустойчивость. [c.267]

    Применение. Кобальт и никель являются важными компонентами легированных сталей. Используют и спе-< циальные сплавы на основе кобальта и никеля. Так, кобальт составляет основу жаропрочных (с железом и ванадием) и высокотвердых (с карбидом вольфрама) сплавов. Никелевые сплавы обладают высокой механической прочностью, стойкостью при высоких температурах, устойчивостью к коррозии. Сплав никеля с хромом и другими веществами — нихром имеет высокое электрическое сопротивление. [c.290]

    Никелевые сплавы (например, 12Х25Н60В15) устойчивы к воздействию горячих и холодных щелочей, разбавленных окисляющих органических и неорганических кислот, а также к воздействию атмосферы [81]. Аэрация и повышение температуры увеличивают скорость коррозии никелевых сплавов. В растворах азотной кислоты никель имеет сравнительно низкую коррозионную стойкость. [c.17]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    В табл. 148 приводятся данные по коррозионной стойкости некоторых никелевых сплавов в серио1 и соляной кислотах. [c.160]

    Никелевые сплавы находят применение в тех случаях, когда от металла требуется большая коррозионная стойкость, в сочетании с высокими механическими свойствами или высокой х<аростойкостью. [c.161]

    Аппаратура, изготовленная из никелевых сплавов (например, кол ухо-труб-чатые аппараты), обладая высокой коррозионной стойкостью, может иметь меньшш" вес за счет уменьшения толш,ины стенки трубы. [c.162]

    Металлургической промышленностью США разрабатываются новые стойкие сплавы для конденсаторных трубок. Для повышения стойкости трубок к эрозионнокоррозионному износу при повышенных скоростях морской воды предложено легирование медно-никелевых сплавов хромом. Опробованы для сплава ЛЫ-838 (16% N1, 0,4% Сг, 0,8% Ре, 0 05% Мп) и ЛЫ-848 (30% N1. [c.56]

    Отличительное свойство тз оплавких металлов — высокая коррозионная стойкость в большинстве неорганических кислот. По коррозионной стойкости в этих средах тугоплавкие металлы превосходят все остальные (кроме, разумеется, золота и большинства металлов платиновой группы), а также нержавеющие стали и никелевые сплавы (хастеллои). [c.7]

    Наибольшее увеличение скорости коррозии под действием сульфатов, особенно в восстановительной среде, наблюдается для никелевых сплавов вследствие образования низкоплавкого продукта коррозии — эвтектической смеси NigS. —Ni (температура плавления 645 °С). Более высокая коррозионная стойкость в аналогичных условиях низколегированных стал< й связана с более высокой температурой плавления эвтектической смеси FeS—Fe (988 °С). Высокой коррозионной стойкостью в золе, содержащей сульфаты щелочных металлов, обладают стали и сплавы с повышенным содержанием хрома, ввиду того что в поверхностном слое их продуктов коррозии образуется барьерная прослойка тугоплавких сульфидов хрома rS (температура плавления 1565 °С). [c.225]

    Термомеханическая предыстория материала может, по-видимому, оказывать существенное влияние и на стойкость к водородному охрупчиванию других суперсплавов [38, 118, 279, 287]. В качестве примера на рис. 42 показано влияние термообработки на листовой сплав Рене 41 [279] при термическом наводороживании в течение 1000 ч при температуре 650°С и давлении 1 атм. Необходимо отметить отрицательный эффект старения, приводящего к образованию а также охлаждения в печн от температуры обработки на твердый раствор (вероятно, путем образования т] на границах зерен, о чем свидетельствует межкристаллитный характер водородного разрущения [279]). В другом исследовании был обнаружен небольшой положительный эффект высокоэнергетической штамповки сплава Инконель 718 перед старением по сравнению с обычным материалом, состаренным после термообработки на твердый раствор уменьшение относительного сужения в результате выдержки в водороде при давлении 69 МПа снизилось от 72% при обычном старении до 60% в материале, подвергнутом термомеханической обработке (ТМО). Таким образом, образование у или у" после ТМО ухудшает свойства исследованных сплавов практически в такой же степени, как и в отсутствие ТМО. По-видимому, для упрочнения и повышения стойкости к КР решающее значение имеет улучшение субструктуры сплава при старении, предшествующем ТМО [160, 289]. Не исключено, что более сложные процессы обработки, включающие ТМО, позволяют добиться улучшения свойств никелевых сплавов. [c.116]

    В табл. 27 приведены также составы и дана общая характеристика других типов никелевых сплавов с высоким содержанием хрома и молибдена. Первые результаты испытания нового сплава МР35М показывают, что по стойкости в морских условиях он не уступает Хастел-лою С. Следует отметить, что новый сплав не склонен к коррозионному растрескиванию под напряжением. Не испытывают коррозии в морских атмосферах и сплавы Иллиум Я и Элгилой. [c.79]

    Следует отметить, что такие никелевые сплавы, как Хастеллой С, Монель 400 и Инколой 825, относятся к числу наиболее катодных металлов. Если какой-нибудь из этих сплавов находится в контакте со сплавом, расположенным выще в ряду напряжений (например, со сплавом меди), то наблюдается тенденция к контактной коррозии. Например, каждый из двух сплавов, Инконель 625 и 70 Си — 30 N1, обладает хорощей стойкостью в морской воде. Однако в местах тесного контакта многожильного кабеля из Инколоя 625 с арматурой из медноникелевого сплава наблюдалась ускоренная коррозия этой арматуры, приводящая к ее разрушению. [c.89]

    Выше уже упоминалось о высокой стойкости никелевых сплавов Инконель 702 и 706, а также Удимет 710 к коррозионному pa Tpeatima-нию в морской воде [159, 160]. [c.185]

    Химический состав никеля, скорости и типы коррозии, а также изменения механических свойств, вызванные коррозией, приведены в табл. 102—104 те же данные для Ni—Си-сплавоа — в табл. 105—107 для никелевых сплавов — в табл. 108—ПО. Данные о стойкости коррозии под напряжением — в табл. 111. [c.279]

    Изменения скоростей коррозии и максимальных глубин питтинговой и щелевой коррозии других алюминиевых сплавов серии 5000 по отнощению к изменениям концентрации кислорода в морской воде были неустойчивыми и неопределенными. Изменения концентрации кислорода в морской воде не оказывали постоянного и.пи одинакового влияния на коррозионное поведение алюминиевых сплавов серии 5000. Такое поведение, подобно поведению нержавеющих сталей или некоторых никелевых сплавов, можно отнести за счет двойственной роли, которую кислород может играть по отношению к сплавам, коррозионная стойкость которых зависит от пассивных пленок на их поверхности. [c.377]

    Высокой стойкостью в слабых водных растворах кислот и щелочей обладает никельмедный силав (монель-металл) НМЖц 28-2,5-1,5 (ГОСТ 492-52) нике.ль н никелевые сплавы известны как материалы, применяющиеся для деталей, соприкасающихся с соляной кислотой. Хромоникелевые сплавы с высоким содержанием никеля (N1 = 35—80% и Сг = 13—20%) устойчивы в соляной кислоте концентрации до 20% прн комнатной температуре. [c.37]

    Железо и его сплавы являются основными конструкционными материалами. Никель в качестве легирующей присадки к сталям повышает их прочность, жаростойкость и коррозионную стойкость. До 10% N1 входит в состав нержавеющих сталей. Из медно-никелевых сплавов (например, мельхиора) изготавливают монеты, домашнюю утварь, ювелирные изделия. Никелирование металлов придает им красивый внешний вид и защищает от коррозии. Гематит РеаОз и магнетит Рез04 используются для производства ферритов — магнитных материалов для радиоэлектроники, производства магнитных жидкостей, магнитофонных лент и т. д. [c.188]

    Окислительное декарбоксилирование проводится в достаточно жестких условиях и существует опасность интенсивной коррозии аппаратуры. Исследованиями [120] показано, что при температурах среды до 150 °С достаточно устойчива сталь 1Х18Н10Т, при 200 °С достаточной коррозионной стойкостью обладает сталь 1Х17Н13М2Т, при 250 °С относительно стойка эта же сталь (скорость коррозии 0,33 мм/год) и практически устойчив титан. При всех режимах устойчива эмалированная аппаратура. В зарубежной практике [121] рекомендуют использовать реакторы, изготовленные или футерованные никелевым сплавом состава Ni 54% Сг 14,5—16,5% Мо 15—17% W 3—4,5% Fe 4—7%. Использование этого сплава не только обеспечивает надежную работу аппаратов, но и уменьшает смолообразование. [c.168]

    Характерные черты инженерных разработок. Для определения путей технологического оформления процессов при высокой экзотермичности метанирования и равновесных ограничениях, накладываемых на процесс при повышенных температурах, были проведены многие исследования, которые привели к принятию необычных инженерных решений. Так, рециркуляция горячего и холодного продукционного газа была исследована методом ограничения максимальной адиабатической температуры реакции в реакторах как с неподвижным, так и с кипящим слоем. Рециркуляция больших объемов газа является причиной значительного увеличения давления в слое катализатора и приводит к необходимости использования трубчатых реакторов метанирования. В качестве катализатора использовали никелевый сплав Ренея, нанесенный методом плазменного напыления на стенки труб. Эти катализаторы показывают очень хорошую активность, но имеют ряд недостатков, характерных для никелевых катализаторов плохую термостабильность и низкую стойкость к отравлению серой [30]. Термостабильности до некоторой степени способствует хорошая теплопроводность [c.239]


Смотреть страницы где упоминается термин Никелевые сплавы стойкости: [c.528]    [c.264]    [c.809]    [c.841]    [c.339]    [c.156]    [c.336]    [c.81]    [c.239]    [c.670]    [c.809]    [c.841]   
Морская коррозия (1983) -- [ c.77 , c.279 ]




ПОИСК





Смотрите так же термины и статьи:

Никелевые сплавы

Стойкость химическая никелевых сплавов



© 2025 chem21.info Реклама на сайте