Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышцы основных аминокислот

    Содержание основных аминокислот в белках мышц животных [c.92]

    Заслуживает внимания относительное постоянство содержания основных аминокислот во всех типах мышц животных, рыб и ракообразных. [c.94]

    Как отмечалось выше, скелетные мышцы служат основным резервом белка в организме. Они обладают также высокой активностью в отношении деградации одних и синтеза других аминокислот. У млекопитающих именно мышцы являются главным местом катаболизма аминокислот с разветвленной цепью. Мышечная ткань окисляет лейцин до СО2 и превращает углеродный скелет аспартата, аспарагина, глутамата, изолейцина и валина в интермедиаты цикла трикарбоновых кислот. Способность мышц разрушать аминокислоты с разветвленной цепью при голодании и диабете возрастает в 3— [c.341]


    Возможность осуществления белками разнообразных и многочисленных функций не может быть, как ожидалось ранее, прямо связана с химическим строением молекул, так как все белки являются полипептидами, построенными из одних и тех же двадцати основных аминокислот. Напрашивалась мысль, что химическая универсальность и практически необозримое многообразие свойств соединений этого класса как-то связаны с пространственным строением молекул. Впервые такую мысль высказали в 1930 г. К. Мейер и Г. Марк [1-3]. Ими же было сделано предположение о зависимости механических свойств белков от пространственной формы полипептидных цепей. Г. Марк, изучая дифракцию рентгеновских лучей, показал, что растяжение и сокращение мускулов сопровождаются обратимым изменением трехмерной структуры мышечных белков, т.е. работа мышц в конечном счете сводится к внутримолекулярному процессу. [c.7]

    Белки-это полимеры аминокислот. Фибриллярные белки являются основным структурным материалом волос, кожи, ногтей, мышц и сухожилий. В этих структурах белковые цепи свернуты спиралями в многожильные тяжи или связаны друг с другом водородными связями в листы. Глобулярные белки включают ферменты, молекулы-переносчики и антитела. В белках этого типа цепи могут иметь вид спиралей или листов, но затем эти структуры многократно перегибаются, сворачиваясь в компактные, изолированные молекулы. [c.338]

    Особенности метаболизма в печени. Печень обеспечивает источниками энергии мозг, мышцы и периферические органы. Это глюкоза, кетоновые тела. Сама печень в качестве источника энергии использует кетокислоты, образующиеся при распаде аминокислот. Поэтому основное назначение гликолиза в печени — образование строительных блоков для биосинтеза жирных кислот, холестерина. [c.438]

    При длительной работе наряду с увеличением использования в энергетическом обмене жиров может происходить новообразование углеводов из веществ неуглеводной природы (глюконеогенез), активируемое гормоном кортизолом. Основным субстратом глюконеогенеза являются аминокислоты, часть которых накапливается в мышцах при работе в результате распада тканевых белков. Они могут быть использованы для образования глюкозы. [c.330]

    Интересно отметить, что все изоферменты лактатдегидрогеназы, выделенные из одного и того же источника, имеют одинаковый молекулярный вес (135 ООО), но значительно отличаются по аминокислотному составу. Так, например, изофермент ЛД1, выделенный из сердца крысы, в отличие от ЛДб из скелетной мышцы крысы, содержит (в моль на 1 моль фермента) значительно больше кислых аминокислот, чем основных  [c.197]


    В нервной системе встречаются тормозные синапсы, использующие и калий, и хлор. Как правило, при этом используются особые тормозные медиаторы, которые управляют воротами соответствующих каналов. Например, у позвоночных есть два тормозных медиатора — аминокислота глицин и гамма-аминомасляная кислота, которые, в основном, открывают хлорные каналы мембраны, (Действие такого сильного яда, как стрихнин, основано на том, что он связывается с рецепторами глицина и блокирует многие тормозные синапсы спинного мозга это приводит к развитию судорожных сокращений мышц и гибели из-за остановки дыхания.) Интересно, что гамма-аминомасляная кислота является тормозным медиатором не только у позвоночных, но и у членистоногих. [c.172]

    При выполнении физических упражнений средней интенсивности в течение нескольких часов мышцы в качестве источника энергии используют собственный гликоген, другие ткани используют глюкозу, циркулирующую в крови. Печень поддерживает уровень глюкозы в крови как за счет мобилизации гликогена, так и за счет глюконеогенеза. Основным субстратом глюконеогенеза служит лактат, образующийся в работающих мышцах и эритроцитах. Другими субстратами являются аминокислоты, глицерин, пируват (рис. 6.4). [c.384]

    Значительная часть азота аминокислот переносится в печень из других органов в составе аланина. Многие органы выделяют в кровь аланин. Образование аланина в этих органах представлено на рис. 11.17. Аминогруппы разных аминокислот посредством реакций трансаминирования переносятся на пируват, источником которого служат глюкоза, а также безазотистые остатки аминокислот. Особенно много аланина содержится в крови, оттекающей от мышц и от кишечника. Из крови аланин извлекается в основном печенью и в гепатоцитах используется для синтеза аспарагиновой кислоты путем трансаминирования с оксалоацетатом. [c.345]

    Основными неуглеводными предшественниками глюкозы служат лактат, аминокислоты и глицерол. Лактат образуется в работающей скелетной мышце, когда скорость гликолиза превосходит скорость превращений в цикле трикарбоновых кислот и в дыхательной цепи (разд. 12.10). Аминокислоты происходят из белков, поступающих с пищей, а при голодании образуются в результате распада белков скелетных мышц [c.105]

    По длине пептидных цепей гормоны гипофиза значительно различаются между собой. Некоторые из них относятся к белкам среднего молекулярного веса. Например, гормон роста человека имеет мол. вес. 21 500 и характеризуется высокой специфичностью гормоны роста из других источников не могут его заменять. Гормон, стимулирующий функцию щитовидной железы (тиреотропии, ТТГ), представляет собой гликопротеид с мол. весом 28 000. С другой стороны, гормоны нейрогипофиза (задней доли гипофиза) вазопрессии и окситоцин являются простыми пептидами, построенными всего лишь из 9 аминокислотных остатков (собственно, из восьми, если считать цистин одной аминокислотой рис. 2-2). Как указывает уже само название, нейрогипофиз состоит из нервной ткани, секреторная функция которой находится под непосредственным контролем центральной нервной системы. Вазопрессии является основным фактором, регулирующим объем циркулирующей крови и артериальное давление на уровень секреции этого гормона оказывает влияние стресс. Окситоцин действует на гладкие мышцы матки при родах, а также служит триггером лактации. Выделение молока из молочных желез в определенной мере зависит от сосательных движений младенца, под влиянием которых происходит рефлекторное высвобождение окситоцина в кровоток. [c.321]

    После того как в мыщцах истощается запас гликогена, основным источником пирувата становятся аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин — одну из гликогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Механизм превращения мышечных аминокислот в аланин, схема его участия в глюконеогенезе представлены в гл. 24. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл (рис. 20.2) называют циклом Кори (по имени его первооткрывателя). У цикла Кори две функции — сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза. [c.273]

    Белки (протеинами) — высокомолекулярные соединения, молекулы которых построены из остатков а-аминокислот. Белки содержатся в клетках всех растительных и животных организмов, в крови, молоке, мыщцах, хрящах и входят в состав куриного яйца. Белки — основные компоненты живого организма. Они дают ему оболочку (кожу), обеспечивают его движение (мышцы, сухожилие) и контролируют течение всех жизненных процессов (ферменты).  [c.310]


    До сих пор наше внимание было сосредоточено в основном на двух источниках энергии и углерода — углеводах и аминокислотах. Но если при кратковременной интенсивной мышечной работе чаще всего используется АТФ гликолитического происхождения, то длительная мышечная актгшность у позвоночных обычно осуществляется за счет обмена жирных кислот. А поскольку распад жирных кислот по пути 3-окисления (рис. 22) дает в качестве конечного продукта ацетил-КоА, который затем поступает в цикл Кребса для полного сжигания до СО2 и воды, длительная работа мышц на этом топливе обязательно требует аэробных условий. [c.76]

    Биосинтез мочевины. Основным механизмом обезвреживания аммиака является синтез мочевины в печени. Исходя из исследований школы И.П. Павлова, мочевина синтезируется в печени, так как при выключении печени из кровотока (фистула Экка—Павлова) в крови возрастает фонд свободных аминокислот, аммиака и резко уменьшается содержание мочевины. М.В. Ненцкий и С.С. Салазкин установили, что в печени происходит образование мочевины из аммиака и углекислоты. Г. Кребс и К. Гензелейт (1932) показали, что инкубация срезов печени с различными аминокислотами дает малый выход мочевины. Однако, если добавить одну из трех аминокислот (орнитин, цитруллин или аргинин) выход мочевины резко возрастает. При этом другие аминокислоты также становятся предшественниками мочевины. На основании этих данных, Кребс создал первый в биохимии метаболический цикл мочевинообразования. Г. Коен и С. Ратнер выяснили, что начальной реакцией этого цикла является синтез карбамоилфосфата. Из мышц и других тканей аммиак достав- [c.261]

    При декарбоксилировании аминокислот образуются биогенные амины. Основными биогенными аминами являются у-аминомасляная кислота, гистамин, серотонин и креатин. ГАМК образуется в мозге из глутаминовой кислоты. Накопление ее в мозге приводит к развитию процессов торможения в моторных центрах ЦНС. Гистамин образуется в различных тканях при декарбоксилировании гистидина и поэтому называется тканевым гормоном. Он вызывает расширение мелких кровеносных сосудов и сужение крупных, а также сокращение гладких мышц внутренних органов. Гистамин участвует в возникновении болевого синдрома, стимулирует образование соляной кислоты в желудке. Серотонин образуется из триптофана. Он участвует в регуляции артериального давления, температуры тела, частоты дыхания, почечной фильтрации. В больших дозах серотонин стимулирует, а в малых — подавляет деятельность ЦНС. Креатин синтезируется в тканях из заменимых аминокислот аргинина и глицина (рис. 87). Под действием креатинкиназы и АТФ он превращается в креатинфосфат, который используется для ресинтеза АТФ в мышцах (см. главы 3 и 15). Количество креатинфосфата пропорционально мышечной массе. Креатин и креатинфосфат превращаются в креатинин, который выводится с мочой. Количество креатинина, выделяющегося из организма, пропорционально общему содержанию креатинфосфата и может использоваться для характеристики массы мышц. При уменьшении мышечной массы уменьшается также содержание креатинина в моче. [c.235]

    Мышцы служат основным источником субстратов глюконеогенеза — аминокислот, а потому являются первичной мишенью действия глюкокор- [c.215]


Смотреть страницы где упоминается термин Мышцы основных аминокислот: [c.567]    [c.172]    [c.349]    [c.369]    [c.189]    [c.271]    [c.272]    [c.272]    [c.167]    [c.312]    [c.35]    [c.287]    [c.290]    [c.291]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.93 , c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Мышца



© 2025 chem21.info Реклама на сайте