Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты биосинтез

    Первая стадия синтеза жирных кислот является в то же время одной иа последних стадий распада углеводов, поскольку ацетилкофермент А (ацетил-КоА), исходный продукт в биосинтезе жирных кислот, образуется в процессе метаболизма углеводов. [c.137]

    Стартовой реакцией биосинтеза жирных кислот считается (и это вполне надежно доказано) образование так называемого активного ацетата из пировиноградной кислоты и кофермента А. Суммарное уравнение реакции включает нуклеофильную атаку тиольной группой углерода карбонильной функции и декарбоксилирование пиру-ватного фрагмента с сопутствующими окислительно-восстановительными процессами (схема 5.4.1). [c.131]


    Уксусная кислота (СНзСООН) образуется при уксуснокислом брожении разбавленных водных растворов этанола. В метаболических процессах участвует как сама кислота, так и ее соли. Особенно важно присутствие уксусной кислоты в форме ацетила в ацетилкоферменте А (разд. 7.5.1.2), поскольку это соединение является ключевым промежуточным продуктом метаболических процессов и исходным веществом при биосинтезе всевозможных природных продуктов, как, например, жирных кислот, терпеноидов, растительных красителей и многих других. [c.183]

    РИС. 11-2. Сравнение биосинтеза жирных кислот с -окислением [c.467]

    Пальмитиновая кислота является первым самостоятельным продуктом биосинтеза жирных кислот. В последующем она может удлиняться до насыщенных кислот С,д и т.д. по тому же механизму ацильной сборки", либо включаться в последующие биосинтетические превращения. Из последующих (после сборки алкильной цепи) реакций насыщенных жирных кислот необходимо выделить образование ненасыщенных жирных кислот — олеиновой кислоты из стеариновой, как [c.133]

    Биосинтез жирных кислот и их производных [c.131]

    БИОСИНТЕЗ ЖИРНЫХ КИСЛОТ. Рассказывая о терпенах в гл. 13, мы [c.137]

    Другое практическое применение химического окисления следует искать в биосинтезе простагландинов [201, 202]. В природе они синтезируются путем селективного окисления предшественника— жирной кислоты С20, содержащей три или четыре двойные связи. Полиненасыщенная жирная кислота в присутствии фермента циклооксигеназы окисляется молекулярным кислородом путем двух последовательных реакций радикальной циклизации с образованием бициклического промежуточного продукта — эндопероксида. Разлагаясь, он образует различные простагландины, в том числе Р0Р2 и РОРга, а также тромбоксан Аг и простациклин (рис. 5.20). [c.326]

    Вообще аспекты участия СТГ вследствие его анаболического действия весьма многообразны он способствует транспорту аминокислот в клетки, стимулирует усвоение жирных кислот, биосинтез белков. СТГ обладает также диабетогенным действием, повышенная его секреция может привести к сахарной болезни. Это объясняется торможением периферийного обмена глюкозы. [c.244]

    Жирные кислоты, биосинтез de пот — ферментативный процесс вх образования из ацетил-S-KoA. Поскольку мембраны митохондрий не проницаемы для активного ацетата, то существует несколько специальных механизмов его перевода в транспортабельную форму. [c.230]

    Высшие жирные кислоты, биосинтез — ферментативный процесс образования, осуществляемый путем многократной конденсации двууглеродного фрагмента — ацетата (биосинтез жирных кислот de novo) или же путем изменения цепи уже существующих жирных кислот, имеющих 12—16 атомов углерода. Биосинтез жирных кислот de novo протекает в основном в цитоплазме. [c.224]


    Вакиль (1938) по казал, что малонил-КоА участвует в биосинтезе жирных кислот, вероятно, за счет конденсации с ацетил-КоА, сопровождающейся отщеплением одного моля Ко,Л и образованием Сз-про-межуточных продуктов, которые восстановительно декарбоксилируются до бутанон-КоА. [c.732]

    Интересно заметить здесь, что спирты, участвующие в образовании этого вида глицеридов, имеют такой же состав, что и обычные жирные кислоты — факт, указывающий на общность их биосинтеза. [c.124]

    Малонил-СоА — промежуточный продукт р-окислительного метаболизма пропионата (рис. 9-6, путь а)—одновременно является промежуточным продуктом биосинтеза жирных кислот. Возможно, накопление слишком больших количеств малонил-СоА приводит к нарушению [c.334]

    НЫЙ переносчик и активатор многих жирных кислот, биосинтез промежуточного 5-ацилкофермента А требует предварительного образования ацилангидрида, способного осуществлять 5-ацилирова-ние. Так, например, в случае ацетата ферментативное образование [c.225]

    Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), добавляют пенициллин (2—4 мкг/л), детергенты (твин-40 и твин-60) или производные высших жирных кислот (пальмитаты, стеараты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает вьщеление аминокислот в среду. [c.45]

    Малонил-КоА — непосредственный предшественник в биосинтезе жирных кислот (zu. Жирные кислоты, биосинтез de novo). [c.240]

    Биосинтез de novo жирных кислот. Биосинтез насыщенных жирных кислот в большей степени изучен в бактериальных организмах, например Е. oli-, полагают, что в растительных и животных организмах общие принципы биосинтеза жирных кислот аналогичны [270]. [c.346]

    По данной теме за период 1999-2002 гг. Проведено получение биологически активных соединений из классов порфиринов, пептидов, витаминов, полиненасыщенных жирных кислот. Изучено их взаимодействие в форме молекулярных ансамблей для выявления их биологического действия. Разработаны методы синтеза карборансодержащих порфиринов для исследования в борнейтронзахватной терапии рака, усовершенствован метод биосинтеза полиненасыщенных жирных кислот, необходимых в медицине и косметологии. Получены соединения для изучения фундаментальных биологических процессов (фотосинтез, биологическое окисление, биорегуляция). [c.12]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Выяснилось, что остатки уксусной кислоты СН3СО в молекулах ацетилкофермента А обладают повышенной активностью и способны путем конденсации друг с другом образовывать сложные жирные кислоты, стероиды, фенолы. При этом обычно молекулы конденсируются по схеме голова к хвосту , т. е. карбоксильная группа с метильной. Так, при биосинтезе орселлиновой кислоты в присутствии уксусной кислоты, меченной по карбоксильному углероду, возникло соединение, в котором распределение меток соответствует схеме [c.25]

    Неомыляемые липиды. — При омылении ткани мозга жиры, белки, фосфолипиды и сложные липиды в значительной степени превращаются в водорастворимые, но нерастворимые в эфире вещества. Экстракция эфиром щелочной смеси, образующейся в результате омыления, дает неомыляемую липидную фракцию, содержащую холестерин (строение и конформацию — см. том I 5.12) и небольшое количество сопутствующих стероидов. Холестерин образуется при омылении всех тканей тела, включая и кровь, в 100 которой обычно содержится около 200 м.г холестерина. Около 27% холестерина в крови находится в свободном состоянии, остальное количество этерифици-ровано жирными кислотами ie и ie. Общее количество холестерина, содержащегося в организме человека весом 65 кг, составляет около 250 г. Он образуется в организме в результате биосинтеза, а также (у плотоядных животных) постушает с пищей. [c.639]

    Карбоновые кислоты с длинными цепями встречаются в жирах, которые представляют собой природные эфиры этих кислот с глицерином (Н0СН2СН(ОН)СИ2ОН). Вот почему эти кислоты часто называют жирными кислотами. Наиболее распространенными жирными кислотами являются пальмитиновая и стеариновая ( ie- и ig-кислоты соответственно). Примером биологической роли кофермента А может слу кить его участие в биосинтезе стеариновой кислот1Л (рис. 19-4). [c.137]

    Ацетилкофермент А является активной формой-уксусной кислоты и служит ключевым соединением для биосинтеза различных классов соединений жирных кислот, фенолов, терпеноидов, стероидов. В биохимических системах нередко молекулы активируются при фосфорйлировании. Именно в этой форме реагируют аминокислоты при синтезе полипептидов, претерпевают трансальдолазные превращения сахара. Изучение активных молекул открывает путь к принципиально новым методам в органическом синтезе. [c.257]


    С химической точки зрения липиды не образуют отдельную группу соединений. К ним относятся продукты взаимодействия жирных кислот, т. е. высших алифатических кислот, со спиртами простые липиды), аминоспиртами и другими соединениями сложные липиды), а также простагландины, образующиеся из жирных кислот в результате биосинтеза. К липидам относятся и так называемые изопреноидные липиды, или пре-ниллипиды-, молекулы этих соединений содержат большое число изопреновых фрагментов. Изопреноидными липидами являются, например, ситостерин, каротины, хлорофилл, токоферолы (витамины Е), фитохинон (витамин К) и т. д. О некоторых прениллипидах мы будем говорить отдельно в других главах. [c.195]

    Коэнзим А играет также ключевую роль в биосинтезе жирных кислот, который в настоящее время детально изучен. Так как связь С—S> в ацетильном производном коэнзима очень активна, то на первой стадии идет кондешсащия двух молей ацетил-КоА (I) с элиминированием. КоА (II) и образо1ва(нием ацетоацетил-КоА (III). При воостановлении карбонильной группы, дегидратации и гидрогенизации получается н-бу-танон-КоА (VI). [c.732]

    Одним из наиболее широко используемых с 1952 г. антитуберкулезных средств является дешевый и малотоксичный гидра-зид 4-пиридинкарбоновой кислоты - изониазид (30). Он является антагонистом никотинамида (25), контролирующего внутриклеточные редокс-процессы. Точный механизм его действия на микобактерии пока неизвестен, хотя предполагают, что он может блокировать фермент, ответственный за биосинтез высших жирных кислот, участвующих в формировании стенок микобак-териальных клеток. [c.119]

    В издании рассмотрены все основные классы природных соединений, для которых приведены кпассификации, особенности молекулярной структуры, таблицы типичных представителей, схемы характерных химических реакций, значимые медико-биологические свойства, пути биосинтеза, природные источники При создании книги использована оригинальная литература по 2000 год вкпючительно Содержание книги отражено в 13 главах Введение, Простейшие бифункциональные природные соединения. Углеводы, Аминокислоты, пептиды и белки. Липиды жирные кислоты и их производные, Изопреноиды-1, Изопреноиды-И, от сесквитерпенов до политерпенов. Фенольные соединения. Алкалоиды и порфирины. Витамины и коферменты, Антибиотики, Разные группы природных соединений, Металло-знзимы, Предметный указатель [c.2]

    При введении радиоактивного изотопа в виде простого химического соединения в живой организм образуются более сложные продукты, содержащие радиоактивный атом. Биосинтетический способ получения меченых соединений применяют в тех случаях, когда химический синтез этих веществ слишком сложен. Этот способ был использован для метки многих природных соединений, например белков, полисахаридов, нуклеиновых кислот, пуринов, пиримидинов, витаминов, гормонов, стероидов, алкалоидов, терпенов, карбоновых кислот, аминокислот, жиров и жирных кислот из радиоизотопов чаще всего применяют и Р -. Биосинтезы приводят обычно к неспецифически меченным соединениям с низким выходом требуемого продукта. Однако, если большая часть образующихся меченых соединений может быть использована для различных целей, то их биосинтез экономически выгоден. [c.683]

    Хорошим примером неспецифической метки соединений при биосинтезе служит фотосинтетическое культивирование водоросли hlorella vulgaris в среде радиоактивной двуокиси углерода, дающее 40—60% начальной активности в форме неспецифически меченных а-аминокислот и 5—10% в форме жирных кислот [38, 40, 41, 52], а также небольшое количество меченых нуклеиновых кислот. [c.683]

    Несмотря на относительную стабильность, мембранные компоненты химически не инертны. Они сами подвержены метаболическим превращениям под действием окислительных ферментов, локализованных внутри мембран или на их поверхности. Мембраны содержат также хиноны и другие низкомолекулярные катализаторы. Окислительные реакции играют важную роль в модификации гидрофобных компонентов мембран. Например, стерины, простагландины и другие вещества, обладающие регуляторными свойствами, первоначально синтезируются в форме гидрофобных цепей, связанных с водорастворимыми переносчиками (гл. 12). В мембранах могут накапливаться гидрофобные продукты биосинтеза (так, предшественниками простаглан-динов служат полиненасыщенные жирные кислоты фосфолипидов). Однако при взаимодействии с кислородом в молекулах этих соединений образуются гидроксильные группы, что приводит к постепенному увеличению их способности растворяться в воде. По мере того как гидрофильность соединения возрастает благодаря последовательному гидроксилированию, гидрофобные компоненты мембран неизбежно переходят в водный раствор и полностью включаются в процесс метаболизма. Другим процессом, в котором липиды мембран активно разрушаются, является гидролиз под действием фосфолипаз. [c.356]

    Упоминание о митохондриях обычно вызывает у биохимиков представление о цикле трикарбоновых кислот, -окислительном пути метаболизма жирных кислот и окислительном фосфорилировании. Помимо этих главных процессов в митохондриях протекает множество других химических превращений. Вероятно, наиболее существенное из ннх — это концентрирование ионов, таких, как ионы Са +. Митохондрии также контролируют приток и отток многих соединений, в том числе я АТР. Таким образом, они выполняют важные регуляторные функцна> как в катаболических процессах, так и в процессах биосинтеза. По мере своего роста и размножения митохондрии синтезируют часть своих белков, а ряд других белков получают из цитоплазмы. [c.393]

    При р-окислении от цепи жирных кислот отщепляется по два углеродных атома одновременно. В биосинтезе же жирных кислот этот процесс протекает в обратном направлении, причем в качестве исходного материала используются двухуглеродные ацетильные единицы ацетил-СоА. Выше уже были рассмотрены вопросы о сопряжении этого процесса с расщеплением АТР при помощи последовательности карбоксили- [c.484]


Смотреть страницы где упоминается термин Жирные кислоты биосинтез: [c.67]    [c.180]    [c.4]    [c.604]    [c.370]    [c.18]    [c.135]    [c.191]    [c.87]    [c.459]    [c.466]    [c.466]   
Органическая химия. Т.2 (1970) -- [ c.732 ]

Биохимия Том 3 (1980) -- [ c.192 , c.464 , c.466 , c.473 , c.485 ]

Микробиология Издание 4 (2003) -- [ c.88 ]

Биохимия (2004) -- [ c.338 ]

Общая микробиология (1987) -- [ c.256 , c.407 , c.496 ]

Метаболические пути (1973) -- [ c.60 , c.62 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.715 ]

Химия биологически активных природных соединений (1976) -- [ c.197 , c.346 ]

Биохимия человека Т.2 (1993) -- [ c.231 , c.237 ]

Биохимия человека Том 2 (1993) -- [ c.231 , c.237 ]

Микробиология Изд.2 (1985) -- [ c.74 ]




ПОИСК







© 2024 chem21.info Реклама на сайте