Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число по Гитторфу

    Расхождения в значениях между истинными числами переноса и числами Гитторфа, как видно из уравнения, выражаются величиной хЬ. Величина хЬ равна тому количеству молекул соли, которое необходимо добавить в катодное пространство, чтобы компенсировать уменьшение концентрации от переноса х молекул воды. [c.14]

    Экспериментально числа переноса определяются по изменению концентраций ионов у электродов (метод Гитторфа). [c.446]


    Определенные по методу Гитторфа числа переноса не являются истинными, так как этот метод не учитывает сольватации ионов. Определенные по методу Гитторфа числа переноса называются кажущимися числами переноса. [c.448]

    Каждый -й вид ионов переносит определенное количество электричества <7/. Для оценки доли участия данного вида ионов в переносе электричества Гитторфом введено понятие о числах переноса ионов. Число переноса ионов г-го вида — отношение количества электричества 9 г, перенесенного данным видом ионов, к общему количеству электричества <7, перенесенному всеми видами ионов, находящихся в растворе  [c.456]

    Таким образом, по изменению содержания электролита в катодном и анодном отделениях при электролизе можно определить числа переноса ионов. Этот способ определения чисел переноса называется способом Гитторфа. [c.266]

    Значения подвижности можно найти из измерений электропроводности, определив числа переноса, например, методом Гитторфа. [c.329]

    Для протекания электродиализа весьма существенно изменение чисел переноса ионов в капиллярах полупроницаемой перегородки по сравнению с теми же числами, характерными для самого раствора. Явления изменения чисел переноса в капиллярах мембран обнаружены Гитторфом еще в 1902 г. и затем под- [c.256]

    Тот факт, что многие мембраны при прохождении через них электрического тока обладают свойством изменять числа пере- носа ионов по сравнению со свободным раствором, был известен уже давно. Гитторф в своих классических работах (1902 г.) по определению числа переноса в растворах различных электролитов обнаружил, что некоторые мембраны (в особенности из животных тканей) изменяли числа переноса. В дальнейшем боль- [c.145]

    Уравнение (IV.39) лежит в основе метода Гитторфа, в котором числа переноса определяют по изменению концентрации раствора в приэлектродном отсеке. [c.62]

    Числа переноса, отвечающие методу Гитторфа, фактически являются эффективными (или кажущимися) числами переноса, поскольку движение ионов сопровождается перемещением молекул растворителя, входящих в сольватную оболочку, а эго отражается на изменении кон- [c.64]

    Уравнение (IV.38) лежит в основе метода Гитторфа, в котором числа переноса определяют по изменению концентрации раствора в приэлектродном отсеке. Это уравнение является приближенным, так как не учитывает перенос растворителя (воды) через пористую мембрану, разделяющую отсеки / и II. Более того, изменение количества растворителя в отсеке I в процессе электролиза зависит от конструкции измерительной ячейки, поскольку оио обусловлено не только переносом растворителя в сольватных оболочках ионов, но и другими причинами нарушением гидростатического равновесия из-за обогащения или обеднения отсека / продуктами электролиза, процессом электроосмоса и др. Вследствие этого уравне- [c.70]


    Опыт показывает, что подвижности, а следовательно, скорости и числа переноса Н+, и ОН - ИО НОВ аномально велики (табл. 6). Эта аномалия не была объяснена Гитторфом и не может быть приписана малому радиусу Н+ и ОН--ионов, так как [c.39]

    Введем новую величину — число переноса h ионов сорта I,. пользуясь характеристической системой Гитторфа, следующим образом  [c.447]

    Для установления связи между изменениями количеств веществ в электродных пространствах, числами переноса и количеством прошедшего электричества применим характеристическую систему отсчета Гитторфа (см. разд. VUI. 1). [c.469]

    Поместим плоскости, через которые будем подсчитывать потоки ионов, в тонкие мембраны солевых мостов (время / = О — начало электролиза 4 , одинаковы во всех пространствах). Напомним, что в системе отсчета Гитторфа количество растворителя справа и слева от плоскости отсчета потока остается неизменным в процессе электролиза. Так как в течение электролиза концентрации электролитов в окрестности тонких мембран остаются неизменными, то числа переноса каждого вида ионов на этих границах не есть функция времени, и [c.469]

    Метод Гитторфа. Числа переноса определяются по изменениям концентрации электролита в анодном и катодном пространствах. [c.351]

    Поскольку перенос электричества через раствор сопровождается изменением концентрации электролита в приэлектродных пространствах, то, измерив это изменение, можно определить числа переноса. И. Гитторфом было доказано, что при любом количестве прошедшего электричества [c.266]

    Методом Гитторфа определяют кажущиеся числа переноса, так как ионы Си + и 50 в действительности гидратированы и переносят с собой воду, что не было учтено в приведенных выше расчетах. [c.129]

    Числа переноса, найденные по методу подвижной границы, строго говоря, не равны числам переноса тех же ионов, установленных методом Гитторфа. Это различие вызвано изменением объема V из-за электродных реакций. [c.132]

    N — число Авогадро общее число реагирующих частиц. п — число переноса ионов по Гитторфу. [c.5]

    В свете теории электролитической диссоциации стали понятными некоторые стороны химического поведения электролитов в растворах. Так, она объяснила числа переноса И. В. Гитторфа (1824—1914) и закон Ф. Кольрауша (1840—1910) о постоянной подвижности ионов. Но вскоре после появления теории электролитической диссоциации обнаружились и некоторые ее серьезные недостатки. С. Аррениус рассматривал раствор, подобно смеси газов, в которой молекулы распределены беспорядочно и находятся в тепловом движении. Между тем в растворах электролитов ионы распределяются в известной степени упорядоченно благодаря взаимному притяжению, особенно в растворах сильных электролитов. Лишь в XX столетии были созданы теории сильных электролитов, учитывающие электростатическое взаимодействие между ионами. [c.169]

    За исключением отдельных случаев, числа переноса, определяемые с пом щыо известного аналитического метода Гитторфа, как правило, бывают недостаточно точны для указанной цели. [c.158]

    Речь идет о числах переноса Гитторфа, исправленных на проводимость растворителя [2]. [c.42]

    Числа переноса ионов определяют обычно либо методом Гитторфа по изменению концентрации того или иного электролита в анодной и катодной областях измерительной ячейки такого же типа как и на рис. 4.1, либо методом подвижной границы [70]. Используя для потока электромиграции определение (4.15.11), легко показать, что [c.272]

    Определенные с помощью формулы (4.15.25) числа переноса называют кажущимися (или числами переноса по Гитторфу) возможны и другие оценки вкладов отдельных ионов в электропроводность [5]. Поверхностная плотность потока электромиграции (4.15.21) легко может быть выражена через tк, и х  [c.272]

    Изучив активности с помощью ueneii без переноса и получив опытную кривую E — f( na ) для концентрационной цепи с переносом, в которой одна из концентраций остается постоянной, путем графического дифференцирования получим величины f = f(a ) = (m). Если зависимость i = f(m) известна из данных, полученных иными путями, то можно использовать э.д.с. цепей с переносом для определения активности, решая уравнение (XXII, 4) относительно d In а и интегрируя по Е. Следует отметить, что методом э. д. с. можно определить лишь кажущиеся числа переноса, или так называемые числа Гитторфа, а не истинные числа переноса. [c.550]

    Из установленных Фарадеем законов электролиза вытекало, что электричество, подобно веществу, обусловлено существованием, движением и взаимодействием мельчайших частиц (см. гл. 5). Фарадей вел речь об ионах, которые можно рассматривать как частицы, переносящие элекфичество через раствор. Однако в течение следующего полустолетия ни он и никто другой не занимался серьезно изучением природы таких ионов, хотя работы в этом направлении вообще-то велись. В 1853 г. немецкий физик Иоганн Вильгельм Гитторф (1824—1914) установил, что одни ионы перемещаются быстрее других. Это наблюдение привело к появлению понятия число переноса — характеристики, зависящей от скорости, с которой отдельные ноны переносят электрический ток. Однако даже после того, как химики научились рассчитывать эту скорость, вопрос о природе ионов оставался открытым. [c.118]


    Следовательно, согласно уравнению (4,28), для определения чисел переноса иона по методу Гитторфа необходимо знят , гбн(ее количество протекающего электричества и число эквивале11тов перенесенного вещества, [c.108]

    Измеряемые в методе Гитторфа концентрации и вычисляемые по ним изменения количества вещества в катодном и анодном пространствах определяются на самом деле не только количеством катионов и анионов, поступивщих в эти пространства и покинувших их, но, как получалось в рассмотренных выше случаях, и количеством растворителя, перенесенного этими ионами в виде сольватных оболочек. Оболочки ионов разных знаков неодинаковы по величине. Пусть средние числа молекул воды, входящих в сольватные оболочки ионов Н и С1, равны соответственно п и т. Тогда в разобранной выше схеме электролиза раствора H I при прохождении 1 фарадея электричества в катодном пространстве масса растворителя увеличится на T+/I — х-ш моль, а в анодном пространстве уменьшится на ту же величину. Здесь т+ и т- — уже истинные числа переноса. Существование рассмотренного эффекта можно легко установить, прибавив к электролиту недиссоциирующее на ионы вещество, например сахар или мочевину. После электролиза концентрация прибавленного неэлектролита (вычисленная по отношению к воде) окажется по-разному изменившейся у электродов, причем у одного из иих она увеличится, а у другого уменьшится. Учитывая изменения концентрации прибавленного неэлектролита при определении чисел переноса, можно ввести поправку на перенос воды из анодного пространства в катодное в виде сольватных оболочек и найти истинные числа переноса т+ и Т-. [c.448]

    Метод Гитторфа основан на измерении изменения концентраций ионов в катодном и анодном пространствах электролизера, вызванного прохождением через него постоянного тока. Пусть электролизер заполнен раствором AgNOa, а электродами служат две серебряные пластинки. При прохождении одного фарадея электричества на катоде из раствора катодного отделения выделится один моль металлического серебра, а в анодном отделении один моль Ag+ перейдет в раствор. В растворе ток переносится ионами в соответствии с их числами переноса. Поэтому t+ фарадея перенесут ионы Ag+, а — ионы N03.  [c.188]

    Числа переноса, рассчитанные по формуле (IV.42) в методе движущейся границы, строго говоря, не равны числам переноса тех же ионов, но определенных методом Гитторфа или по разности потенциалов на концах электрохимической цепи, содержащей границу двух растворов Это различие обусловлено некоторым изменением объема V, регистри руемого в методе движущейся границы, из-за электродных реакций Так, например, в рассмотренном примере при пропускании электри ческого тока происходит не только движение катионов, но также пе ремещение анионов и электродный процесс превращения металличе ского серебра в хлорид серебра Ag+ h—ё Л С1. В результате возникает дополнительное изменение объема, равное [c.64]

    Использование в качестве системы отсчета растворителя в целом позволяет учесть сольватационный перенос растворителя с ионами, не вводя при этом никаких В более ранних работах для оценки переноса растворителя при движении ионов в раствор вводили какое-либо нейтральное вещество (например, сахар), молекулы которого, как предполагалось, не входили в состав сольватных оболочек ионов, а потому, не должны были перемещаться. В этих условиях по изменению концентрации нейтрального вещества в приэлектродном пространстве (в методе Гитторфа) можно было рассчитать количество растворителя, которое было перенесено ионами, и оценить так называемые истинные числа переноса. Этот способ оценки истинных чисел переноса был предложен В. Уошборном. Недостаток метода Уошборна [c.73]

    Числа переноса катиона и аниона на основации схемы Гитторфа определяют по изменению концентрации в анодном и катодном пространстве  [c.139]

    В этой цепи через пористую перегородку соприкасаются два раствора соляной кислоты (рис. 12). При прохождении через цепь Р электричества 1 г-атом водорода у правого электрода перейдет в раствор, образуя 1 г-ион водорода. У левого электрода разрядится такое же количество ионов водорода и выделится 1 г-атом водорода. При протекании тока через границу раздела двух растворов часть грамм-иона водорода 1+ пройдет справа налево, а грамм-ионов хлора перейдет слева направо. Здесь + и / — числа переноса соответственно ионов водорода и хлора совместно с гидратп-рованной водой (числа переноса Гитторфа)  [c.26]

    Для определения чисел переноса по методу Гитторфа [72] необходимо производить химический анализ, что весьма затрудняет определение чисел переноса с большой степенью точности. Однако Мак-Иннес и Дол [73] получили с помощью этого метода значения чисел переноса с точностью примерно до 0,2%. Такова же величина расхождения между данными Мак-Иннеса и Дола и соответствующими значениями, полученными по методу движущейся границы. Джонс и Брэдшоу [74] измерили числа переноса для хлористого лития, причем их результаты совпадают с данными, полученными по методу движущейся границы, с точностью до 0,7%. Истинные числа переноса вычисляют из чисел переноса Гитторфа путем введения поправок [75] на перенос молей воды от анода к катоду [c.160]

    Из числа экспериментальных методов особенно эффективным для определения долей переноса тока в концентрированных растворах является радиометрический вариант метода Гитторфа, при котором электролиз ведется в трехъячеечном электролизере, и изучается направление и степень электромиграции радиоизотопа, вводимого в среднее отделение. К достоинствам этого варианта метода Гитторфа в отличие от обычного химико-аналитического относится возможность исследования переноса в тех многочисленных случаях, когда вследствие процессов комплексообразования или сольватации определяемый элемент входит в состав как катиона, так и аниона. [c.404]

    Прохождение электрического тока сквозь растворы электролитов. Скорость, подвижность и электропроводность ионов. Зависимость скорости ионов от среды, температуры, напряжения, природы самого иона. Влияние гидратации (сольватации) на скорость ионов. Подвижности ионов (необходимо знать порядок величин). Законы Гитторфа. Числа переноса. Изменение концентрации у электродов и закон Фарадея. Практическое значение знания чисел переноса. Эквивалентная электропровэдность при данном и бесконечном разведении. Закон независимого движения ионов. Вычисление электропроводностей ионов л+ и X- из подвижностей ионоз, из чисел переноса и эквивалентной электропроводности при бесконечном разбавлении. Методы определения чисел переноса. Кулонометры. Схема соединения приборов при определении чисел переноса. [c.83]


Смотреть страницы где упоминается термин Число по Гитторфу: [c.582]    [c.107]    [c.445]    [c.112]    [c.123]    [c.853]    [c.98]    [c.57]    [c.165]    [c.165]   
Явления переноса в водных растворах (1976) -- [ c.311 ]




ПОИСК





Смотрите так же термины и статьи:

Гитторфа



© 2024 chem21.info Реклама на сайте