Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос электрона влияние растворителя на скорост

    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]


    В отношении стадий, определяющих скорость реакции, механизм нуклеофильного замещения весьма близок к механизму р-элиминирования. Так, скорости мономолекулярных 5м1- и Е]-реакций контролируются одной и той же стадией, а у бимолекулярных 5к2- и Ё2-реакций аналогичны стадии переноса электрона от реагента к уходящей группе они различаются лишь тем, что в реакциях элиминирования электроны проходят по большей цепи атомов углерода. В этой связи неудивительно, что для описания влияния растворителей на мономолекулярные (5.20) и бимолекулярные (5.21) реакции р-элиминирования с различной судьбой зарядов при активации Хьюз и Ингольд предложили правила, аналогичные правилам, используемым для оценки эффектов растворителей в 5м1-реакциях [16, 44] (см. табл. 5.6). [c.212]

    Восстановление анионов ХО , ХОГ. ХОГ(X = С1, Вг, I), как правило, происходит ступенчато. Первые необратимые ступени протекают с участием нескольких электронов и образованием свободных галогенов. Вторая ступень одноэлектронна, продуктом ее является галогенид-ион. На скорость протекающих электродных процессов большое влияние оказывает природа фонового электролита. В замедленной стадии переноса электрона принимают участие нейтральные молекулы растворителя. [c.105]

    Влияние природы растворителя должно сказываться и на скорости переноса электронов в электрохимической стадии. Однако зависимость энергии активации электродной реакции от природы растворителя является достаточно сложной, и в настоящее время для реакций разряда ионов металлов этот вопрос теоретически не рассмотрен. Экспериментальные данные по определению кинетических параметров скорости электрохимической реакции от природы растворителя показывают, что константа скорости слабо зависит от природы растворителя. Например, в табл. 3 приведены значения констант скоростей и коэффициентов переноса для реакции разряда-ионизации кадмия в различных растворителях [14]. [c.10]

    Реакции с переносом группы или электрона в растворе рассматривать с точки зрения теории нелегко, поскольку растворитель принимает участие в реакции не только путем изменения сольватации, но также и в результате изменения растворителя, непосредственно окружающего реагирующие вещества и переходный комплекс. Тем не менее диаграммы изменения потенциальной энергии оказались весьма полезными для описания изменения энергии Б этих реакциях, а также факторов, влияющих на их скорости [3]. Конечно, необходимо провести такое же разграничение влияния отдельных факторов, как это было сделано при обсуждении рис. 6. Недавно Гальперн опубликовал обзор [4] экспериментальных и теоретических работ по реакциям переноса электрона и рассмотрел изменение энергии а) в реакциях неадиабатического переноса электрона, когда реагирующие молекулы находятся в энергетически одинаковых состояниях и переносу электрона предшествует некоторая перегруппировка атомов в реагирующих веществах  [c.86]


    На первой стадии происходит либо прямой перенос электронов от электрода к данному органическому соединению, либо образование сольватированных электронов, либо разряд атомов водорода у поверхности электрода. Какой именно будет первая стадия и что последует дальше — это зависит, очевидно, от ряда факторов. Важную роль играет природа растворителя — применяются и водные, и безводные, и смешанные растворители. Растворитель не только влияет на первую стадию, но и изменяет состав адсорбированного слоя на поверхности электрода и вступает в химическую реакцию с образованием неустойчивого промежуточного продукта. Электрод может оказывать влияние на реакцию благодаря своей каталитической активности, а также адсорбционной способности по отношению к различным атомам и молекулам, имеющимся в растворе. Очень важное значение имеет также его водородное перенапряжение если рассматриваемое соединение восстанавливается с трудом, то на металлическом электроде с низким перенапряжением будет выделяться водород и лишь электрод с высоким перенапряжением будет обеспечивать подвод энергии, необходимой для восстановления. Образование продукта реакции зависит также от таких факторов, как концентрация органического соединения, плотность тока, скорость перемешивания, температура, наличие в электролите кислотных, щелочных или других катализаторов, например солей титана или церия. [c.243]

    В принципе синхронные реакции можно представить как с гетеролитическим, так и с гомолитическим механизмами. Однако не всегда можно привести достаточно веские теоретические соображения или экспериментальные доказательства в пользу одной из этих двух возможностей. В то же время имеются некоторые общие черты, присущие циклическим синхронным реакциям, независимо от электронного механизма разрыва и образования связей. Все такие процессы осуществляются достаточно легко, поскольку циклический перенос электронов, без промежуточной концентрации заряда или неспаренного электрона, энергетически выгоден. Кроме того, скорость таких процессов мало зависит от диэлектрической постоянной растворителя, поскольку полярность активированного состояния незначительно отличается от полярности исходного состояния. Что касается влияния специфической сольватации, то интенсивность ее также мало меняется в ходе активации. [c.392]

    Влияние противоиона и растворителя на скорость переноса электрона при 25° [233] [c.376]

    Перенос протона от карбоновых кислот на карбоновые основания обычно происходит гораздо медленнее. Обусловлено это тем, что более низкая электроотрицательность углеродного атома требует стабилизации отрицательного заряда на карбоновом основании путем делокализации электрона. Последующая перестройка структуры и влияние растворителя могут замедлить результирующую скорость переноса. [c.158]

    По-существу, к тем же выводам можно прийти при рассмотрении перегруппировки 2-метил-1-пентена и изомерного метил-2 Пентена под влиянием трет-бутилата калия, особенно в присутствии диметилсульфоксида, действующего как поглотитель электронов . Хроматографическое исследование продуктов показывает, что скорость изомеризации с разрывом связи третичный углерод — водород (уравнение 14а) значительно ниже, чем при изомеризации с разрывом подобной связи с первичным или вторичным углеродом (уравнение 146) [128]. Детально природа стадии переноса протона в реакции этого типа выясняется но относительным скоростям сдвига двойной связи и дейтерообмена с растворителем в полностью дейтерированном 1-пентене и немеченом 2-метил-1-пентене изомеризация протекает быстрее дейтерообмена, и, [c.229]

    Значительно менсе изучено влияние среды на константу скорости переноса заряда k° О влиянии двойного слоя н адсорб ции на кинетпк переноса заряда же говоритесь (см разд. 2.4.3) Значительная часть опубликованных до настоящего времени экспериментальных результатов свидетельствует о том, что /г относительно мало зависит от природы растворителя. Так, для системы d/ d + эти коистаиты различались ие более чем в 44 раза [99] Прн сравнении со значениями приве-денньши в табл 2.1, видно, что в данном сл>чае F в значительно большей степени определяется природой окислительно-восстаиовительиой системы, чем природой растворителя Это понятно, если вспомнить, что по определению, отражает перегруппировку сольватной оболочки во время переноса электрона Знергии активации, связанные с этими перегруппировками, существенно не изменяются при замене растворителя, но сильно зависят от участвующих частиц [c.85]

    В результате реакции (1-14) часть ионов будет удаляться из равновесия (1-2) в течение одного полупериода переменного напряжения. Следовательно, лишь часть ионов примет участие в процессе переноса электронов в следующем полупериоде. Поэтому переменный ток уменьшится и полностью исчезнет после добавления достаточного количества донора протонов. В этом случае становится возможным наблюдать переменноточную полярограмму, аналогичную полярограмме, полученной в отсутствие донора протонов. В промежуточных случаях, когда скорость протонирования превышает скорость диффузии М , но еще заметно ниже скорости переноса электрона, частотная зависимость остается без изменений. Однако при высоких скоростях протонирования реакция (1-2) будет вести себя как сильно необратимая реакция подобно реакции гпСЬ в воде (рис. 4). Бюткер [6] исследовал влияние протонирования на скорость второй стадии восстановления с помощью импедансных измерений. Он сделал вывод, что для всех изученных углеводородов ско-)ость переноса электрона к иону М велика (не менее 0,1 см/с). a полярограмме постоянного тока наблюдается уменьшение высоты волны, что обусловлено изменением природы растворителя при добавлении воды. Сдвиг потенциала полуволны к менее отрицательным значениям можно описать следующим образом. [c.364]


    Таким образом, наиболее существенная особенность проведенного анализа теории метода погружения — отмеченное [159] запаздывание в формировании скачков потенциала Афд и ЕАф, что, как указывалось выше [158], согласуется с наблюдениями [165—167] о каталитическом влиянии адсорбированного растворителя на скорость стадии переноса электронов. В то же время, как мы видели, в области ПНЗ достаточно высока скорость формирования ЕАф на МЭ. При приближении к ПБ эта скорость снижается. Не исключено, что нулевой или незначительный заряд поверхности электрода в области ПНЗ заметно ускоряет формирование 2Аф и особенно Aфdip(s). [c.80]

    Изложены наиболее важные экспериментальные данные по электровосстановлению органических перекисей и критически рассмотрены различные теории, относящиеся и механизму процесса. Изложение включает следующие аспекты радикально-цепной механизм химических реакций перекисей, механизм установления стационарного потенциала и спонтанный распад перекисей при рз.чомь-нутой цепи, механизм катодного процесса на ртутном и илатиновом электродах. Наиболее полные данные имеются о поведении простейшего представителя — перекиси водорода, которая используется как модельное вещество. Сделаны следующие выводы. При потенциалах основной волны в электрохимическом акте непосредственно участвует (в зависимости. от pH) либо молекула перекиси, либо соответствующий анион возможно и одновременное участие обоих видов частиц. Предшествующий переносу электрона гомолитический распад перекиси (по Бокрису) маловероятен. Скорость реакции существенно зависит, помимо обычных электронных эффектов в молекуле, от адсорбируемости перекиси этим объясняется сильное влияние рода растворителя на потенциал полуволны. Кроме того, перекиси способны вступать в химическое взаимодействие с металлом электрода. В случае ртути в щелочной среде, происходит образование окиси и последующее электрохимическое восстановлеюю ее, приводящее к появлению предволны со спадом в лучае платины наблюдается распад перекиси на поверхности, и в электрохимическую реакцию вступает образующийся кислород. Иллюстраций 12. Библ. 51. назв. [c.384]

    Хаммерих и Паркер [154] на основании обратимых электродных потенциалов рассчитали константы равновесия реакции диспропорционирования трех модельных соединений 4,4 -диметоксибифенила, Th и ДАА. При измерении обратимых электродных потенциалов для пар катион-радикал — дикатион в ацетонитриле и других обычно применяемых в электрохимии растворителях были использованы ловушки воды, например взвесь нейтрального оксида алюминия и трифторуксусный ангидрид. Для всех трех модельных соединений даже в тщательно обезвоженном ацетонитриле вторая стадия переноса электрона имеет необратимый характер. В ацетонитриле константы скоростей этих реакций равны соответственно 2,7-10 , 2,3-10 и 1,9-10 л-моль- -с . Полученные результаты дают основания предположить, что эти катион-радикалы, как и катион-ра-дикалы виоленов, имеют очень низкую тенденцию к диспропор-ционированию. Исследовано также влияние изменений в составе растворителя на константы равновесия. Степень наблюдаемых в каждом случае различий сильно зависит от природы [c.87]

    Авторы отдают себе отчет в том, что не все вопросы в монографии обсуждены достаточно подробно. Некоторые из них описаны качественно, экспериментальный материал не затрагивает все клас> сы органических и неорганических соединений. Сравнительно бедный ассортимент объектов электрохимического исследования, при изучении которых уделялось внимание интермедиатам, обусловлен тем, что авторы различных работ часто используют одни и те же традиционные соединения для выявления возможностей того или иного метода. Так, например, и-нитротолуол, бензо-фенон и его замещенные исследуются особенно часто. Первая стадия электровосстановления бензофенона с образованием анион-радикала была использована различными исследователями для оценки чистоты растворителей (по влиянию электрофильных примесей на морфологию полярографической волны), для определения скорости переноса электрона при равновесном потенциале, для установления факторов, контролирующих первую обратимую стадию его разряда и т. д. [c.5]

    Одновалентные катионы тина Li" , являющиеся жесткими кислотами, как и протон, могут участвовать в нейтрализации анион-радикалов. Катионы фона, способные к образованию йонных пар, также могут влиять на механизм электродных реакций. С помощью добавок доноров протонов обычно легко устано-бить, является ли промежуточно образующаяся частица анион-радикалом или дианионом. Роль среды, которая может иногда существенно влиять на протекание электродных процессов, изучена еще недостаточно. Растворитель или непосредственно участвует в электродном процессе, являясь донором или акцептором йромежуточно образующихся частиц, или оказывает влияние на кинетику переноса электрона в результате того, что расстояние Между электродом и центром реагирующей частицы в переходном состоянии также зависит от природы растворителя. Электрохи-Мики-органики постоянно прилагают усилия, чтобы найти растворитель с низкой кислотностью и электрофильностью для Восстановления и низкой основностью и нуклеофильностью для окисления. Примером может служить использование довольно редко встречающегося в электрохимической практике растворителя сульфолана, в котором скорости как гетерогенного переноса Заряда, так и гомогенных химических реакций сильно замедлены по сравнению с другими растворителями, что позволяет увеличить время жизни промежуточных анаон-радикальных частиц [111. [c.8]

    Переходному состоянию (о-комплексу) предшествует образование комплекса с переносом заряда (КПЗ) в результате донорно-акцепторного взаимодействия между молекулами диаминов и их производных (доноры электронов) и диангидридов или галогенангидридов (акцепторы электронов). Аналогичная схема, возможно, имеет место и при взаимодействии диаминов с дикарбоновыми кислотами, хотя это не подтверждено литературными данными. Отмечают [7], что донорно-акцеп-торное взаимодействие способствует созданию такой ориентации мономеров в системе, которая благоприятствует протеканию реакции, снижая величину предэкспоненциального множителя и энергию активации. Образование КПЗ зафиксировано для ряда систем галогенангидри-ды — третичные и первичные амины [7 16—18], пиромеллитовый диангидрид— диамины [19] и др. В ряде случаев удалось выделить КПЗ как индивидуальные химические соединения. КПЗ — энергетически неустойчивая система. Под влиянием внешних факторов происходит полный перенос электрона от донора к акцептору и образуется о-комплекс. Обе стадии (образование КПЗ и (т-комплекса) являются равновесными, имеют высокую скорость и низкую энергию активации. Константа равновесия реакции образования о-комплекса зависит от полярности растворителя [19 20] и электронной характеристики мономеров [20—22]. Например, в реакции пиромеллитового диангидрида с производными ПФДА замена тетрагидрофурана на более полярный ДМАА приводит [c.44]

    Эти результаты лучше могут быть объяснены влиянием природы растворителя на скорости переноса электрона и фрагментации. Образующийся в этих реакциях анион-радикальный интермедиат 10 незаряжен, хотя и нолярен. Реакция переноса электрона приводит к разделению зарядов, и, таким образом, можно ожидать, что увеличение полярности растворителя будет благоприятствовать ее протеканию. Кроме того, по-види-мому, переходное состояние, ведущее к разрыву связи, будет менее полярным, чем исходное соединение, так как образуются две незаряженные частицы. Увеличение полярности растворителя в этом случае должно снижать скорость фрагментации. Поэтому увеличение kt и уменьщение и вызывают наблюдаемые изменения в отношении ki Ь. [c.214]

    Если бы перенос электрона к хинону от каждого из этих углеводородов происходил в комплексе с переносом заряда, дирадикальная ионная пара могла бы реагировать двумя путями. При отщеплении атома водорода [как в уравнении (35)] получался бы положительный ион, при отщеплении протона — радикал. Легкость образования перинафтильного радикала показывает, что в том случае, когда радикал достаточно стабилен, более предпочтительным оказывается второй путь. При окислении хинонами соответствующих дигидро-нроизводных был получен ряд гетероциклических солей [173], однако условия реакции не позволяют обнаружить промежуточные радикалы. Было бы желательно изучить механизм этих легко идущих реакций, особенно влияние растворителя на скорость. [c.71]

    Реакция ионов гидроксония с фторид-ионами протекает несколько быстрее, чем реакция ионов гидроксония с гидросульфид-ионами. Небольшое различие в наблюдаемых скоростях в этом случае может быть обусловлено действием чисто статистических факторов, поскольку фторид-ион располагает четырьмя парами электронов, способными присоединять протон, тогда как в гидросульфид-ионе таких пар только три. Электростатические взаимодействия оказывают лишь слабое влияние на константу скорости, что, по-видимому, связано с высокой диэлектрической проницаемостью воды, выполняющей здесь роль растворителя. В грубом приближении можно считать, что константа скорости переноса протона от иона гидроксония уменьшается в два раза при введении в молекулу каждого дополнительного положительного заряда, если размер молекулы при этом не изменяется. Так, например, реакции иона гидроксония с комплексами ионов металлов различного заряда характеризуются следующими значениями константы скорости [л/(моль-с)] для Н0Си(Н20)5+ 10 , для НОСо(ЫНз)5 + 5-10 и для НМНР1(еп)2 + l,9 10 . [c.26]

    В проведенном выще анализе допускалось, что в ферментативном процессе механизм переноса протона такой же, как и в модельных системах. Однако нельзя забывать и о том, что свое влияние на величину скорости протонного перехода может оказывать и специфический (например, льдообразный) характер молекулярной структуры водной фазы вблизи поверхности белка. В этом случае скорость передачи протона может отличаться от величины, наблюдавшейся в простых системах [151, 155]. В связи с этим весьма интересен тот факт, что предварительное рассмотрение карт электронной плотности, по-видимому, указывает на присутствие рядом с активным центром высоко структурированной группы молекул растворителя (рис. 16.20,В). [c.618]


Смотреть страницы где упоминается термин Перенос электрона влияние растворителя на скорост: [c.421]    [c.115]    [c.78]    [c.100]    [c.287]    [c.348]    [c.358]    [c.190]    [c.204]    [c.321]    [c.9]    [c.171]    [c.9]   
Ароматическое замещение по механизму Srn1 (1986) -- [ c.214 ]




ПОИСК







© 2025 chem21.info Реклама на сайте