Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутоний химия

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Указанные обстоятельства привели к необходимости разработать надежные, достаточно чувствительные и точные методы анализа на большое число примесей. Анализу должны, как правило, подвергаться такие элементы, как, например, уран, торий, плутоний, химия которых сложна и до последних 15 лет была очень мало изучена. Некоторые из элементов относятся к числу очень редких и трудных для аналитического определения в малых количествах (например, гадолиний, европий, фтор). [c.13]

    Известно, что соосаждение было использовано как основной метод для изучения химических свойств нептуния и плутония [см. Г. С и б о р г. Успехи химии, 15. 420 (1946)]. [c.58]

    Плутоний—металл серебристо-белого цвета. Некоторые константы Ри приведены в табл. 35. Химия плутония отличается большой сложностью в связи с тем, что он дает соединения, в которых имеет различную степень окисления. Так, например, растворяясь в кислотах, он образует катионы Ри , Ри " , РиО , РиО , которые сосуществуют в растворах вследствие близости друг к другу потенциалов окисления. [c.326]

    Помимо получения около 1000 радиоактивных изотопов искусственными ядерными реакциями, с помощью последних были синтезированы недостающие элементы периодической системы с 2 = 43, 61, 85 и 87. С помощью ядерных реакций химия вышла за пределы последнего элемента — урана искусственно получены элементы с порядковыми номерами 93—104. На крупнейших заводских установках разделяются изотопы урана, в атомных реакторах получаются относительно большие количества плутония. Ядерная техника получения элементов с каждым годом расширяет сферу своего практического применения. [c.61]

    Для плутония, как и для урана и нептуния, известны разнообразные степени окисления от +2 до +8. Однако высшие степени окисления для Ри менее характерны. Отличительной особенностью химии плутония является то, что его производные в различных степенях окисления, кроме +7, могут одновременно находиться в растворе в равновесии вследствие легкости взаимных переходов ( , В) в кислой среде (Ш H l) [c.444]


    АКТИНОИДЫ (актиниды), семейство из 14 радиоактивных элементов III гр. 7-го периода периодич. системы (ат. н. 90-103), следующих за актинием торий ТЬ, протактиний Ра, уран и, нептуний Np, плутоний Ри, америций Аш, кюрий Ст, берклий Вк, калифорний СГ, эйнштейний Ез, фермий Рт, менделевий М<5, нобелий N0 и лоуренсий Ьг (для последних двух элементов название не общепринято). А. объединяются, подобно лантаноидам, в особую группу благодаря сходству конфигураций внещ. электронных оболочек их атомов (см, табл.), чем обусловлена близость мн. хим. св-в. Гипотеза о существовании в 7-м периоде семейства А. была выдвинута Г. Сиборгом в начале 1940-х гг. [c.78]

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли с свет монографии, посвященные торию, таллию, урану, рутению, молибдену и калию, готовятся к печати монографии по аналитической химии плутония и бора. [c.4]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Редактор тома Аналитическая химия плутония П. Н. Палей [c.2]

    Настояш,ая монография составлена по обш,ему плану серии монографий, издаваемых Институтом геохимии и аналитической химии им. В. И. Вернадского АН СССР. В ней значительное место уделено теоретическому введению — описанию аналитически важных свойств плутония и его соединений на этой основе далее изложены методы определения, методы отделения и анализ примесей в плутониевых материалах. [c.5]

    Аналитическая химия плутония 17 [c.17]

    Аналитическая химия плутония [c.33]

    Аналитическая химия плутония 49 [c.49]

    Ниже рассмотрены методы получения и свойства некоторых соединений плутония, использующихся в аналитической химии. Труднорастворимые соединения получают осаждением. Для выделения растворимых солей в твердом виде применяют методы выпаривания или кристаллизации. [c.85]

    Аналитическая химия плутония Ц3 [c.113]

    Аналитическая химия плутония 145 [c.145]

    Аналитическая химия плутония 177 [c.177]

    Несмотря на сравнительную простоту объемного метода, занимающего важное место в аналитической химии вообще, в аналитической химии плутония он занимает пока более скромное место. Это связано, по-видимому, в первую очередь с существованием радиометрического метода, одного из наиболее избирательных и простых методов определения плутония. Ограничения радиометрического метода анализа, связанные с зависимостью результатов от изотопного состава плутония, толкают к развитию других методов определения плутония, в том числе и титри-метрических методов. [c.178]

    Аналитическая химия плутония 193 [c.193]

    Аналитическая химия плутония 225 [c.225]

    Аналитическая химия плутония 241 [c.241]

    Аналитическая химия плутония 257 [c.257]

    Аналитическая химия плутония 273 [c.273]

    Соединения актиноидов. Химия актиноидов интенсивно развивается. Коллективом отечественных ученых во главе с В.И.Спи-цыным синтезированы многие соединения, в которых проявляется, как указывалось, семивалентное состояние нептуния, плутония, америция. Установлена также неизвестная ранее закономерность стабилизации низших состояний окисления элементов (М +) для актиноидов, начиная с калифорния ( f) в сторону увеличения их атомных номеров в периодической системе. [c.361]

    Химия плутонияв связи с развитием ядерной энергетики приобрела самостоятельное теоретическое и практическое значение. [c.362]

    Пунктирной линией отмечены наиболее устойчивые формы валентности. От тория до урана устойчивая валентность возрастает от 4 до 6, затем она снижается до трех и сохраняется как стабильная форма от Ат до Lr. За последние три года в Институте физической химии АН СССР быяи получены соединения нептуния (VH), плутония (VH) и америция (VH). [c.61]

    Валентность четыре типична для тория и играет более нли менее значительную роль в химии ряда других актинидов. Для нептуния и плутония эта валентность является одной из наиболее характерных, тогда как соединения U (которые могут быть получены действием Zn в кислой среде на соли ураиила) обладают отчетливо выраженными восстановительными свойствами. Произ- [c.371]

    ПЛУТОНИЙ (Plutonium) Pu, искусственный радиоакт. хим. элем., ат. н. 94, относится к актиноидам. Известно 15 изотопов с мае. ч. 232—246 наиб, долгоживущий (Ti/j 7,5-10 лет, а-излучатель). Открыт Г. Сиборгом, Э. Макмилланом, Дж. Кеннеди и А. Валем в 1940 при изучении ядерной р-ции приводящей к образованию [c.449]

    ПЛУТбНИЙ (от назв. планеты Плутон лат. Plutonium) Pu, искусств, радиоактивный хим. элемент III гр. периодич. системы, ат. н. 94, ат. м. 244,0642 относится к актиноида. и Стабильных изотопов не имеет. Известны 15 изотопов с мае. [c.580]

    Отдельные тома серии Аналитическая химия элементов будут выходить са, юстоятельно, по мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, никелю, редкоземельным элементам и иттрию, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, алюминию, селену и теллуру. Готовятся к печати монографии по аналитической химии нептуния, кремния, германия, радия, золота и др. [c.4]


    Оксиэтилидеидифосфоновая кислота является эффективным комплексообразователем и применяется для устранения жесткости воды 1—3], стабилизации перекисных соединений и поверхностно-активных веществ 11—8], травления алюминия и его сплавов [9], В аналитической химии это соединение используется прн определении тария [10] и переходных металлов для маскирования бериллия и титана при определении некоторых элементов, в частности, алюминия в технологии разделения редкоземельных элементов [И], для разделения нептуния и плутония [12]. [c.150]

    В некоторых случаях дифракция рентгеновских лучей может быть использована для определения абсолютной конфигурации оптически активных веществ. В 1951 г. Бижро, Пирдеман и ван Боммель изучили натриеворубидиевую соль (+)-винной кислоты с помощью дифракции рентгеновских лучей и нашли, что ее абсолютная конфигурация соответствует той, которая была произвольно выбрана Фишером из двух возможных энантиоморфных структур 100 лет назад. Дифракция рентгеновских лучей находит также широкое применение в неорганической химии при определении как структур, так и правильных формул многих гидридов бора и карбонильных комплексов металлов, которым ранее были приписаны ошибочные формулы. Во многих случаях дифракция является единственным практическим методом установления правильного состава соединений. При изучении искусственно полученных элементов— нептуния, плутония, кюрия и америция — стало возможным быстро устанавливать их чистоту и химический состав, используя чрезвычайно малые количества вещества и не разрушая образцы. [c.583]

    Один из важнейших продуктов атомной промышленности — плутоний до сего дня не имеет в советской литературе достаточно полного ос 1ещения теории и практики его анализа. Большинство работ советских авторов по аналитической химии плутония до последнего времени оставались неопубликованными, а работы зарубежных авторов — трудно доступными. [c.5]

    В монографиях Яцимирского, Васильева [259] и Бабко [15] обсуждаются теоретические аспекты химии комплексных соединений и разобраны способы определения констант. Наиболее значительной работой по химии комплексных соединений плутония является изданная в 1961 г. книга Гельман, Москвина, Зайцева и Мефодьевой [60]. [c.38]

    Комплексообразование существенно влияет на поведение ионов плутония различных валентностей в процессе химического выделения и определения этого элемента. Оно может стимулировать или замедлять реакции окисления и восстановления. Подбором комплексующих анионов решаются химико-аналитические задачи осадительной, экстракционной и ионообменной очистки плутония. Велико значение комплексных соединений для титраметрического определения плутония в присутствии мешающих элементов. Ниже будут освещены литературные данные по комплексообразованию плутония, имеющие значение в аналитической химии элемента. [c.38]

    Методы электролитического получения растворов плутония в каком-либо одном валентном состоянии находят все более широкое применение как в препаративной химии, так и в электрометрическом анализе. [c.81]

    Двуокись плутония, PuOj. Двуокись плутония широко применяется в аналитической химии как наиболее устойчивая весовая форма, а также в технологии в качестве исходного материала при получении галогенидов и других соединений. [c.106]


Смотреть страницы где упоминается термин Плутоний химия: [c.283]    [c.153]    [c.45]    [c.6]    [c.7]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Плутоний

Химия водных растворов нептуния, плутония и америция

Химия плутония в растворе



© 2025 chem21.info Реклама на сайте