Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Актиноиды химия

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    АКТИНОИДЫ (актиниды), семейство из 14 радиоактивных элементов III гр. 7-го периода периодич. системы (ат. н. 90-103), следующих за актинием торий ТЬ, протактиний Ра, уран и, нептуний Np, плутоний Ри, америций Аш, кюрий Ст, берклий Вк, калифорний СГ, эйнштейний Ез, фермий Рт, менделевий М<5, нобелий N0 и лоуренсий Ьг (для последних двух элементов название не общепринято). А. объединяются, подобно лантаноидам, в особую группу благодаря сходству конфигураций внещ. электронных оболочек их атомов (см, табл.), чем обусловлена близость мн. хим. св-в. Гипотеза о существовании в 7-м периоде семейства А. была выдвинута Г. Сиборгом в начале 1940-х гг. [c.78]

    Разделы 8—11 представляют сердце неорганической химии— это теория кислотно-основного равновесия, химия растворителей и координационная химия. Последующие пять разделов книги совершенно независимы друг от друга. Они содержат обзор новейших достижений химии отдельных групп элементов (благородных газов, галогенов, переходных элементов, семейств лантаноидов и актиноидов), химии металлорганических соединений, неорганических цепных и циклических соединений, кластеров и др. [c.13]

    Приведенные сведения по химии элементов подразделены на основной текст и дополнений. Элементы рассматриваются в соответствии с подгруппами периодической системы (длиннопериодный вариант), причем сначала описаны главные подгруппы (5- и р-элементы), затем побочные ( -элементы, в порядке возрастания числа -электронов). В конце книги кратко изложена химия лантаноидов и актиноидов. В дополнениях вещества классифицированы по степеням окисления пи. В тех случаях, когда определить м) затруднительно, ее обычно считают нулевой. [c.295]

    Актиноиды существуют в форме катионов. Основные виды ионов Э- +, +, ЭОГ и ЭОа . Для Np, Pu и Ат в жестких условиях получены ионы (ЭОз) . Последние нестабильны и существуют в сильнощелочной среде. Общие свойства соединений или ионов различных элементов, находящихся в одинаковой степени окисления, аналогичны. Большинство соединений одинакового типа изоморфны. Оксо-ионы (МОа) и (МОа) имеют весьма прочные связи М—О и в отличие от других оксо-ионов остаются неизменными в ходе химических превращений и ведут себя как катионы, свойства которых промежуточны между свойствами ионов М+ и М +. Способность к образованию одним и тем же элементом разных по составу катионов значительно усложняет химию водных растворов актиноидов. Особенно это касается подгруппы уранидов. Например, у Pu все четыре окислительных состояния могут одновременно сосуществовать в растворе в сравнимых концентрациях. [c.360]


    Рассмотрение химии (/-элементов целесообразно наминать с 1ПБ подгруппы, содержащей элементы с конфигурацией длиннопериодном варианте периодической системы Д. И. Менделеева. (Подгруппа 1ПБ включают также лантаноиды и актиноиды-/-элементы, см. гл. 9). [c.482]

    Соединения актиноидов. Химия актиноидов интенсивно развивается. Коллективом отечественных ученых во главе с В.И.Спи-цыным синтезированы многие соединения, в которых проявляется, как указывалось, семивалентное состояние нептуния, плутония, америция. Установлена также неизвестная ранее закономерность стабилизации низших состояний окисления элементов (М +) для актиноидов, начиная с калифорния ( f) в сторону увеличения их атомных номеров в периодической системе. [c.361]

    Многие особенности, характерные для -элементов, наблюдаются также и 1 для /-элементов, которые более похожи на -элементы, чем иа 5- и р-элементы. /-Элементы представлены лантаноидами и актиноидами, в атомах которых за- полняются соответственно 4/- и 5/-оболочки. Лантаноиды очень сходны по хими- ческим свойствам. Близость свойств соединений лантаноидов обусловлена тем, I что застройка внутре шей 4/-оболочки мало сказывается на состоянии валентных [электронов. В образовакии химической связи 4/-электроиы лантаноидов обычно не принимают участия. [c.496]

    Из актиноидов значительное применение имеют лищь ТЬ, и и Ри, хотя использование пока ограничено несколькими важными, но узкими областями. Поэтому кратко рассмотрим химию только этих элементов. [c.607]

    В третьей побочной подгруппе различия в свойствах лантана и лантаноидов, с одной стороны, и актиния и актиноидов, с другой, в основном, обусловлены релятивистскими эффектами. Первые три энергии ионизации Ас выше, чем соответствующие энергии Ьа, хотя до лантана сверху вниз в подгруппе энергии ионизации уменьшаются. Лантаноиды образуют, в основном, тригалогениды (исключение составляют Се, Рг, ТЬ, которые также образуют тетрафториды). Для актинидов же типично большее разнообразие с образованием тетра-, пента- и гексагалогенидов. Это иллюстрирует хорошо известное в неорганической химии правило, что из двух элементов побочной подгруппы более тяжелый проявляет большую валентность. Объяснение этого правила с позиции влияния релятивистских эффектов заключается в том, что релятивистское расширение - или /-подоболочки облегчает удаление с нее электронов (проявляются более высокие степени окисления). [c.87]

    КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ — соединения, кристаллическая решетка которых состоит из комплексных ионов, способных существовать самостоятельно в растворах. Комплексным называется ион, состоящий из атома металла или неметалла в определенном валентном состоянии, связанного с одним или несколькими способными к самостоятельному существованию мoлeкyлa ш или ионами. К- с. образуются в результате присоединения к данному иону (или атому) нейтральных молекул или ионов. К- с., в отличие от двойных солей, в растворах диссоциируют слабо. К- с. могут содержать комплексный анион (напр., Fe ( N)e) ), комплексный катион Ag (NH3)2]+ или вообще К- с. могут не диссоциировать на ионы (напр., [Со (N0 )3 (ЫНз)з]). к. с. широко используются в аналитической химии, при получении золота, серебра, меди, металлов платиновой группы и др., для разделения лантаноидов и актиноидов. К К- с. относятся вещества, играющие важную роль в жизнедеятельности животных и. растений — гемоглобин, хлорофилл, энзимы и др. [c.132]

    С 1ПВ-подгруппы периодической системы начинается изучение химии переходных элементов — и /-элементов. К этой подгруппе относятся скандий 5с, иттрий У, лантан Ьа и актиний Ас, а также два семейства /-элементов лантаноиды (2=58—71) и актиноиды (7==90—103). Таким образом, ШВ-подгрупиа является самой большой и включает 32 элемента. Ввиду ряда специфических особенностей лантаноидов и актиноидов их свойства рассмотрены отдельно. [c.355]

    В химическом отношении радиоактивные элементы разнородны, поскольку они принадлежат к разным группам системы. Строго говоря, их химические свойства можно было бы рассматривать совместно с их типовыми aнaJюгaми по группам. Однако при изучении свойств радиоактивных элементов приходится сталкиваться со специфическими трудностями, общими для всех этих. элементов. Главные из них — наличие проникающих излучений, нестабильность, малые количества и рассеянность алементов. По этой причине радиоактивные элементы в курсе неорганической химии целесообразно рассматривать отдельно. Единственное исключение было сделано для технеция, поскольку он является средним элементом подгруппы марганца и его удаление из последовательности Мп — Тс — Яе не позволяет проследить закономерности изменения свойств элементов в подгруппе. Остальные радиоактивные элементы либо являются завершающими в подгруппах (Ро, А1, Яп, Гг, Ка), либо входят в большое семейство (Ргп в семействе лантаноидов), либо образуют самостоятельное семейство актиноидов. [c.501]

    Изучение химических свойств радиоактивных элементов прежде всего наталкивается на проблему их концентрирования и разделения. Эта задача относится к числу труднейших в препаративной химии, поскольку, например, тяжелые актиноиды были получены в количествах, исчисляемых всего десятками атомов. Концентрирование и разделение осуществляется методами соосамсдения, экстрак- [c.501]

    БЕРКЛИЙ (от Беркли, Berkeley-город в США, где был открыт Б. лат. Berkelium) Вк, искусственный радиоактивный хим. элемент Ш гр. периодич. системы ат. н. 97 относится к актиноидам. Стабильных изотопов не имеет. Получены 10 изотопов с мае. ч. 240-251 (кроме 241). Наиб, долгоживущие Вк (7,,2 1380 лет а-излучатель) Вк (Т,/2 314 сут -излучатель). Конфигурация внеш. электронных оболочек атома 5/ 6s 6p d 7i степени окисления -f3 (наиб, устойчива), +4 энергия ионизации Вк - Вк 40,8 эВ электроотрицательность по Полингу 1,0-1,2 ионные радиусы Вк 0,0935 нм, Вк -" 0,0870 нм. [c.282]


    Один из последних вариантов периодической системы массовым тиражом выпущен издательством Химия (1967 г.). В отличие от ранее публикуемых таблиц этот вариант не содержит самостоятельной нулевой группы, элементы которой в виде главной подгруппы перенесены в VIII группу. Это придает единообразие периодической системе. Другая особенность новой таблицы состоит в том, что в нее вошел 104-й элемент — курчатовий Ки. Этот элемент занял место под гафнием, аналогом которого он является, что дало возможность решить вопрос о размещении актиноидов. [c.188]

    АМЕРИЦИИ (Ameri ium) Am, искусственный радиоакт. хим. элемент, ат. н. 95 относится к актиноидам. Известно [c.32]

    Дж/(моль-К). Степень окисл. от +2 до +А, наиб, устойчива -ЬЗ, в к-рой f по хим. св-вам подобен др. трехвалентным актиноидам. Образуется при облучении трансурановых элементов нейтронами в ядерных реакторах. Получ. восст. fFa литием. Примен. гл. обр. f 2,63 года, претерпевает а-распад и спонтанное деление) — источник нейтронов в активац. анализе, медицине и др. f (Ti/ 352 года, а-иэлучатель), не требующий нейтронной защиты, примен. в науч. исследованиях f обладает низкой критич. массой ( 10 г), но малодоступен. Высокотоксичен, работа с f проводится в защитных боксах. Допустимая конц. 5 f в открытых водоемах и воздухе рабочих помещений соотв. 133,2 и 4,1-10 Бк/л. [c.231]

    НОБЕЛИЙ (ЫоЬе11ит) Ыо, искусственный радиоакт. хим. элем., ат. н. 102 относится к актиноидам. Известно 9 изотопов с мае. ч. 251—259 наиб, долгоживущий - Ыо (ТуД,5 ч). О получении изотопов Н. первой сообщила в 1957 международная группа ученых, работавших в Стокгольме, однако, как показали последующие опыты, выполненные в США и СССР, вывод этой группы был ошибочен. Надежные сведения об изотопах Н. с мае. ч. 251—256 получены Г. Н. Флеровым с сотрудниками в 1963—67. Степень окисл. Н. +2 и -ЬЗ. Получается при бомбардировке и и трансурановых элементов ионами Ne и др. легких элементов. [c.389]

    ПЛУТОНИЙ (Plutonium) Pu, искусственный радиоакт. хим. элем., ат. н. 94, относится к актиноидам. Известно 15 изотопов с мае. ч. 232—246 наиб, долгоживущий (Ti/j 7,5-10 лет, а-излучатель). Открыт Г. Сиборгом, Э. Макмилланом, Дж. Кеннеди и А. Валем в 1940 при изучении ядерной р-ции приводящей к образованию [c.449]

    ТОРИЙ (Thorium) Th, радиоактивный хим. элем. П1 гр. периодич. сист., ат. п. 90, ат. м. 232,0381 относится к актиноидам. В природе в основном состоит из изотопа 232ТН (Ti 1,389-10 лет). Открыт Й. Берцелиусом в 1828. [c.585]

    ФЕРМИЙ (Fermium) Fm, искусственный радиоакт. хим. элем., ат. н. 100 относится к актиноидам. Известно 15 изотопов с мае. ч. 244—258 наиб, долгоживущий Fm(ri  [c.618]

    Лит- Вдовенко В М., Современная раднохимия, М, 1969, Москвин А. И, Координационная химия актиноидов, М, 1975, Лантаноиды и актиноиды, под ред К У Бэгиалла, пер с англ, М, 1977, Борин Л Л, Карелин А И, Термодинамика окислительно-восстановительных процессов в технологии актиноидов, М, 1977, Симакин Г А [и др]. Радиохимиям 1977. т 19. в 4, с 560-64. Лебедев И А, Мясоедов Б Ф там ле, 1982 т 24, в 6, с 700-28 Б В Г ромов [c.79]

    КАЛИФОРНИЙ (от назв. штата Калифорния, США лат. alifornium) f, искусств, радиоактивный хим. элемент III гр. периодич. системы, ат. н. 98 относится к актиноидам. Стабильных изотопов не имеет. Известно 17 изотопов с мае. [c.286]

    КЮРИЙ (от имени П. Кюри и М. Склодовской-Кюри лат. urium) m, искусственный радиоактивный хим. элемент III гр. периодич. системы, ат. н. 96 относится к актиноидам. Стабильных изотопов ие имеет. Известно 15 изотопов с мае. ч. 237-251. Наиб. долгоживущие изотопы Ст (Т,,2 1,58-10 лет) и Ст(Тц2 3,4-10 лет)-а-излучатели. Первый из них обнаружен в земиой коре в иек-рых радиоактивных минералах родоначальник семейства Конфигурация внеш. электронных оболочек атома 5/ 6i 6p 6i/ 7j степень окисления -(-3 (нанб. устойчива), -t-4, -(-6 электроотрицательность по Полингу 1,2 ат. раднус 0,175 нм, ионные радиусы 0,0946 нм для m и 0,0886 нм для Сш  [c.560]

    ЛОУРЕНСИЙ (Lowren ium) Lr, искусств, радиоактивный хим. элемент 1П гр. периодич. системы, ат. н. 103 относится к актиноидам. Стабильных изотопов не имеет. Известно 8 радиоактивных изотопов Lr, [c.611]

    МЕНДЕЛЕВИЙ (Mendelevium) Md, искусств, радиоактивный хим. элемент III гр. периодич, системы, ат.н. 101 относится к актиноидам. Стабильных изотопов не имеет. Известно 13 изотопов с мас.ч. 247-252, 254-260. Наиб, долгоживущие Md (Т1/2 56 сут, а-излучатель), [c.33]

    МЕТАЛЛОВ ОКИСЛЕНИЕ, подразделяется на химическое и электрохимическое. Для хим. окисления используют обычно газообразные реагенты, для электрохим.-водные р-ры. М. о. газообразными реагентами протекает при газовой коррозии, получении оксидов или галогенидов металлов (напр., Мо, W, Re), получении ряда материалов (напр., Si3N4), в планарной технологии, при горении металлов, очистке нек-рых цветных металлов в расплавл. состоянии от примесей. Наименее устойчивы к окислению щелочные, щел.-зем. металлы, РЗЭ, актиноиды, наиб, устойчивы - благородные металлы. [c.42]

    К кон. 1860-х гг. стало известно 63 хим. элемента и большое число разнообразных хим. соед., однако научная классификация элементов отсутствовала. Основой для систематики явился периодич. закон Менделеева, с помощью к-рого были исправлены атомные массы ми. элементов и предсказаны св-ва неизвестных в то время в-в. Послед, открытия галлия (П.Э. Лекок де Буабодран, 1875), скандия (Л. Нильсон, 1879), германия (К. А. Винклер, 1886), лантаноидов, благородных газов (У. Рамзай, 1894-98), первых радиоактивных элементов - полония и радия (М. Склодовс-кая-Кюри, П. Кюри, 1898) блестяще подтвердили периодич. закон. При получении астата, актиноидов, курчатовия, нильсбория и элементов с атомными номерами 106 и выше этот закон был использован иа практике. Приоритет Менделеева в отбытии периодич. закона, нек-рое время оспаривавшийся Л. Мейером, был закреплен в названии одного из искусств, элементов (менделевия). [c.211]

    Несмотря на то что уран известен с кон. 18 в., химия актиноидов приобрела самостоят. значение только в 40-х гг. 20 в., когда стали проводиться работы по созданию ядерного оружия. Начиная с 60-х гг. первенство в прикладных исследованиях принадлежит проблемам ядерного топлива. Большая часть актиноидов получена искусств, путем (Г. Сиборг, Г. Н. Флеров и др.). Особенность химии актиноидов заключается в трудности выделения многих из них в больших кол-вах из-за их радиоактивности. Для получения актиноидов разработаны спец. методы синтеза и очистки, созданы микромегоды Н.х. и методы дистаНц. управления процессами. Появилось Понятие ядерной чистоты материалов. Способы контроля чистоты продуктов. [c.211]

    Химия РЗЭ (см. Редкоземельные элементы) близка к химии нек-рых редких металлов и химии актиноидов, что связаио с определенными аналогиями в электронном строении и хим. св-вах всех этих элементов и определяет их совместное присутствие в нек-рых прир. источниках. Уникальные св-ва РЗЭ были изучены и реализованы лишь начиная с 60-70-х гг. Особенностью этих элементов является близость их хим. и многих физ. св-в, что привело к необходимости преодоления трудностей при выделении, глубокой очистке и определении индивидуальных элементов. Интерес к этой области Н.х. возрастает в связи с открытием высокотемпературных оксидных сверхпроводников. [c.211]


Смотреть страницы где упоминается термин Актиноиды химия: [c.315]    [c.79]    [c.504]    [c.428]    [c.428]    [c.231]    [c.322]    [c.322]    [c.432]    [c.483]    [c.605]    [c.613]    [c.618]    [c.618]    [c.692]    [c.106]    [c.558]    [c.578]    [c.9]   
Основы неорганической химии (1979) -- [ c.538 , c.541 ]




ПОИСК





Смотрите так же термины и статьи:

Актиноиды



© 2025 chem21.info Реклама на сайте