Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нептуний химические свойства

    Известно, что соосаждение было использовано как основной метод для изучения химических свойств нептуния и плутония [см. Г. С и б о р г. Успехи химии, 15. 420 (1946)]. [c.58]

    Следующий этап состоял в получении аналогичным способом и исследовании химических свойств элемента, еще более тяжелого, чем нептуний. Однако установка, работающая но принципу облучения урановой мишени нейтронами, полученными действием ускоренных дейтонов на бериллий, не давала достаточного количества вещества для синтеза соединений 94Э. [c.226]


    Уран. Элемент № 92 — уран и — является последним радиоактивным элементом, который встречается в природе. Все остальные так называемые трансурановые элементы, получены искусственно. В силу того, что уран является наиболее распространенным ядерным горючим, его физические и химические свойства изучены наиболее подробно. Изотопы (7 1д=4,5-10 лет) и (8,5-10 лет) являются родоначальниками двух естественных радиоактивных рядов, а (1,6-10 лет) входит в радиоактивный ряд нептуния. Особая роль урана в развитии науки о радиоактивности состоит в том, что само явление радиоактивности было впервые обнаружено именно в минералах урана. Кроме того, уран — это первый элемент, для которого была обнаружена цепная реакция деления под действием нейтронов (1939) .  [c.437]

    Разделение урана, нептуния и плутония основано на различии их химических свойств и значительно легче осуществляется, чем разделение изотопов урана. Поэтому роль плутония в ядерной технике неуклонно возрастает. Металлический плутоний, как уран и нептуний, получают путем восстановления РиР., или РиР барием, кальцием или литием при высокой температуре. [c.443]

    До открытия трансурановых элементов (нептуния и др.) положение урана, так же как тория и протактиния (атомные номера 92, 91 и 90), в периодической системе Менделеева не вызывало сомнения их помещали под переходными элементами шестого периода — гафнием, танталом и вольфрамом. В соответствии с тем, что у атомов Nb, Та и W идет достройка электронного уровня 5 d, принималось, что у Th, Ра и и происходит заполнение электронного уровня 6 d. Химические свойства тория, протактиния и урана в значительной степени напоминают свойства элементов переходных групп IVa (Ti, Zr, Hf), Va (V, Nb, Та) и Via ( r, Mo, W) [171 ]. По этой причине в большинстве довоенных учебников, а также статьях уран считали аналогом Сг, Мо и W и помещали в VI подгруппу периодической системы. [c.5]

    Разделение близких по химическим свойствам актиноидов — урана, нептуния и плутония — может быть основано на разнице в свойствах их четырех- и шестивалентных соединений. [c.400]

    По химическим свойствам нептуний во многом сходен с ураном и плутонием. В образовании его химических связей участвуют 5Д и 7 электроны. В растворах солей нептуний образует ионы Кр +, Кр +, ЫрО а также КрО +и КрО 5 . [c.623]

    ХИМИЧЕСКИЕ СВОЙСТВА НЕПТУНИЯ [c.374]

    Металлический америций — более электроположительный и, следовательно, более активный металл, чем нептуний и плутоний. Он очень реакционноспособен, но сведений о его химических свойствах мало. Потенциал перехода америция из элементарного состояния в Ат + составляет 2,32 в, что близко к аналогичным переходам редкоземельных элементов. [c.398]


    Методы отделения нептуния, плутония и америция от урана основаны на перечисленных ниже химических свойствах  [c.544]

    Химические свойства урана, нептуния, плутония и америция очень близки, а их твердые соединения обычно изоморфны. Основные различия проявляются в устойчивости степеней окисления в растворе. [c.546]

    Различными исследователями (Манхеттенский проект) были изучены химические свойства нептуния при применении препаратов весом от нескольких микрограммов до нескольких миллиграммов. [c.179]

    Для отделения плутония от урана и продуктов его распада существует ряд различных приемов. Эти методы можно разделить на осаждение, жидкостную экстракцию (разд. 9.9) и ионообменные процессы (разд. 9.8) фактически это те же методы, которые используют для разделения искусственных радиоактивных изотопов (разд. 5.8). Все они основаны на том, что плутоний, как уран и нептуний, может иметь несколько степеней окисления и что химические свойства данного элемента в одной степени окисления сильно отличаются от химических свойств этого же элемента в другой степени окисления. Отличия между элементами в разных степенях окисления, использованные I процессах осаждения и жидкостной экстракции для выделения плутония, приведены в табл. 5.12. [c.175]

    После щелочноземельного металла радия добавочные электроны присоединяются к и 5/ оболочкам, образуя так называемую актинидную группу, аналогичную лантанидной группе шестого периода. Однако химические свойства актинидов не так сходны, как химические свойства лантанидов, так как добавочные электроны, присоединяющиеся у актинидов к 5/ и 6с/ оболочкам, больше удалены от ядра и связаны менее прочно, чем соответствующие электроны 4/ и Ъс1 оболочек у лантанидов. Например, лантаниды существуют в водных растворах главным образом только в трехвалентном состоянии, тогда как уран, нептуний и плутоний в водных растворах существуют в четырехвалентных состояниях. [c.285]

    По химическим свойствам нептуний оказался довольно близким к урану, подобно последнему он обладает переменной валентностью (3, 4, 5 и 6), но в четырехвалентном состоянии более химически устойчив, чем уран, и в этом отношении приближается к торию. Это свойство нептуния было использовано для отделения его от урана. [c.275]

    Экстракцию нептуния в разных валентных состояниях широко используют как при разработке экстракционных методов извлечения этого элемента из облученного урана, так и при изучении его физико-химических свойств. Полнота экстракции нептуния, например, из нитратных систем зависит от общей концентрации ионов ЫОз" и высаливающих агентов, в качестве которых применяют нейтральные нитратные соли различных катионов (НН4+, Ма  [c.421]

    Все актиниды, за исключением актиния, характеризуются заполнением уровня 5/ в электронной оболочке, что определяет подобие их физико-химических свойств. Кроме системы и—51 и отдельных сведений о силицидах тория, нептуния и плутония, никаких данных о системах, образованных элементами 5/ с кремнием, не имеется. Это лишает возможности указать общие закономерности, имеющие здесь место. Большие и сравнительно близкие по величине радиусы атомов таких элементов при металлической и ковалентной связи [620] должны определять сложность строения диаграмм состояния силицидных систем, особенно в областях, бедных кремнием. Диаграмма состояния системы и— 51 является примером. В то же время области, богатые кремнием, должны иметь простое строение, так как структура силицидов в указанных системах определяется прежде всего типом укладки металлических атомов. Это положение также подтверждается имеющимися экспериментальными данными. [c.214]

    Для выделения элементов в радиоактивно-чистом виде применяется комбинация описанных выше приемов и методов. Число проводимых операций зависит от химических свойств, выхода радиоэлемента в ядерной реакции, периода полураспада, порядкового номера облученного элемента и энергии бомбардирующих частиц. Самыми сложными объектами радиохимического анализа являются продукты облучения тяжелых элементов (тория, урана и других) частицами высокой энергии. При этом образуются радиоизотопы всех элементов периодической системы элементов от бериллия до нептуния.  [c.12]

    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]


    Для развития химической науки вообще и для физической химии в частности огромное значение имело открытие Д. И. Менделеевым (1834—1907) периодического закона химических элементов (1869), впоследствии названного его именем. Этот закон позволил на основании знания химических свойств одних элементов предвидеть свойства других. Оценивая это открытие Д. И. Менделеева, Ф. Энгельс писал Менделеев, применив бессознательно гегелевский закон о переходе количества в качество, совершил научный подвиг, который смело можно поставить рядом с открытием Леверье, вычислившего орбиту еще не известной планеты — Нептуна . Менделеев является также автором гидратной теории растворов, на которой основаны современные исследования в области растворов. [c.9]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    Всестороннее химическое исследование его свойств показало, что нептуний не является аналогом ренияине может быть отнесен к побочной подгруппе VII группы. Его химические свойства аналогичны урану максимальная валентность равна 6, но окисляется из низшего в высшее валентное состояние труднее, чем уран. [c.286]

    Трансурановые элементы (заурановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в периодической системе Д. И. Менделеева. Атомные номера 93. Большинство известных трансурановых элементов (93—103) принадлежит к числу актиноидов. Все изотопы их имеют период полураспада значительно меньший, чем возраст Земли. Поэтому Т. э. практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Первый из трансурановых элементов нептуний Np (п. н. 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Ри, п. н. 94), америция (Ага, п. н. 95), кюрия (Сга, п. н. 96), берклия (Вк, п. н. 97), калифорния( f, п. н. 98), эйнштейния (Es, п. н. 99), фермия (Рш, п.н. 100), менделевия (Md, п. н. 101), нобелия (No, п. н. 102), лоуренсия (Lr, п. н. 103) и курчатовия (Ки, п. н. 104). Так же получены Т. э.с порядковым номером 105— 106. Более или менее полно изучены химические свойства Т. э. Криста.члографи-ческне исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств Т. э. показали, что элементы с п. н. 93—103 — аналоги лантаноидов. Из всех Т. э. наибольшее применение нашел Ри как ядерное горючее. [c.138]

    После открытия Макмилланом и Абельсоном в 1940 г. нептуния (атомный номер 93) оказалось, что этот элемент по своим свойствам напоминает уран и совсем не похож на рений, стоящий в периодической таблице непосредственно выше него. Изучение химических свойств последующих элементов — плутония и других привело к выводу, что у этих элементов начинает заполняться электронный уровень 5/, и что они образуют семейство элементов, подобное семейству лантанидов. [c.5]

    Возьмите любое из последних изданий таблицы Менделеева в них неизменно лаптаноиды и актиноиды вынесены в самостоятельные строки. Аналогия химических свойств этих элементов в трехвалентном состоянии легла в основу актиноидной теории. Эта теория принесла химии большую пользу. Ио многие химики не считали и не считают ее всеобъемлющей, основополагающей. Известные экспериментальные факты, такие, например, как существование урана, нептуния, плутония и других элементов в различных валентных состояниях, эта теория объяснить [c.388]

    Ориентация прежде всего на физическую идентификацию новых элементов объяснялась главным образом аномальными химическими свойствами первых трансуранов. Вопреки ожиданиям нептуний и плутоний оказались больше похожи на уран, чем на рений и осмий. А ведь по логике периодической системы (как представлялось в то время) элементы № 93 и 94 должны были занять места в VII II VIII группах. [c.407]

    Под названием актиниды объединяются элементы с порядковыми номерами 89—103 включительно. До открытия трансурановых элементов торий Z = 90), протактиний (2 = 91) и уран 2 = 92) включались в IV, V и VI группы периодической системы соответственно и считались аналогами вышестоящих гафния, тантала и вольфрама. Однако отмечалось, что эта аналогия не является полной ввиду отклонений свойств элементов и их соединений от закономерностей, наблюдаемых в гомологическом ряду. Когда были открыты трансурановые элементы — нептуний и плутоний,—оказалось, что они по химическим свойствам отличаются от предполагаемых аналогов и напоминают более уран, чем рений и осмий. Исследование нептуния и плутония, а также открытых затем трансплутониевых элементов показало, что эти элементы в одинаковом валентном состоянии очень сходны друг с другом и все вместе напоминают группу лантани-дов, особенно в трехвалентном состоянии. Поэтому они и объединены [I] в семейство актинидов. По аналогии с лантанидами предполагалось, что семейство актинидов объединяет 14 элементов половина из них в о время не была еще открыта. [c.489]

    Большая подвижность 5/-электронов по сравнению с подвижностью 4/-электронов обусловливает большую склонность актинидов к комплексообразованию и существование более высоких валентностей. Последнее обстоятельство побудило некоторых исследователей выдвинуть гипотезы о существовании семейства торидов или уранидов. Возможно, что наиболее удачным, с химической точки зрения, решением является выделение урана, нептуния, плутония и америция как элементов, весьма сходных по химическим свойствам и проявляющих в водных растворах валентности - -3, -f4, -1-5, -Ь6, в группу уранидов , а элементов, начиная с кюрия, имеющих основную валентность + 3, — в группу кюридов [3]. [c.491]

    В настоящее время многие ученые склоняются к выводу, что торий и протактиний, по-видимому, вообще не имеют 5/-электронов, Что касается урана, нептуния, плутония и америция, то их электронная конфигурация зависит, вероятно, от физического состояния и степени окисления. Значит, в этом случае 5/-электроны оказывают сильное влияни,е на физические и химические свойства элементов, чем, собственно, и объясняется своеобразие свойств легких актиноидов. Поэтому второе редкоземельное семейство но сути дела оказывается вырожденным , и вряд ли правильно располагать его в периодической системе так, как требует актиноидная гипотеза. [c.196]

    Так же как в случае урана и нептуния, степени окисления плутония равны -f-3, -f-4, -1-5 и -f-6. В то время как в водных растворах соединений урана наиболее устойчивым является состояние, характеризуемое степенью окисления - -6, а при степени окисления -f-3 уран является сильным восстановителем (выделяет водород из воды), плутоний наиболее устойчив при степени окисления - -4. Интересно, что все четыре типа ионов плутония могут сосуществовать в равновесии друг с другом, и притом в измеримых концентрациях. Поэтому водные растворы плутония представляют превосходный объект для изучения явлений диспропорционирования и относительной степени гидролиза ионов, находящихся в различных степенях окисления. В данной среде каждой степени окисления плутония соответствует особый характеристический спектр поглощения (см., например, статьи [Н126, С53, К66, К71]), что значительно облегчает анализ и изучение химических свойств этого элемента. [c.183]

    В настоящее время о химических свойствах нептуния и плутония известно достаточно, чтобы поместить их в ряд актинидов, аналогичный хорошо изученному ряду лантанидов. Поэтому химические свойства последующих членов этого ряда можно было точно предсказать, что облегчило их выделение, в частности, с использованием метода ионообменного разделения (разд. 9.8). Элемент америций эоАш впервые был получен (1944) в результате реакций [c.166]

    Элемент № 93 —нептуни . Еще до 1939 г., когда в ряде стран исследовалось пр вращение урана под действием медленных нейтронов, было отмечено образование элементов, не схожих по химическим свойствам ни с торием, ни с протактинием, ни с другими элементами, близкими к урану по периодической системе элементами. Ученые, исследовавшие превращение урана, предположили, что эти элементы являются заурановыми элементами. В начале 1939 г. было доказано, что этот вывод ошибочен. Оказалось,что под действием нейтронов уран делится с образованием осколков —в основном ядер, расположенных в середине периодической системы. Именно эти осколки и были вначале приняты за новые элементы. Однако, наряду с делением, при захвате ураном медленных нейтронов действительно наблюдается одна реакция образования нового элемента. Изотоп урана захватывая нейтроны, переходит в Р"-актив- [c.274]

    К Sf-элементам — актиноидам — относятся 14 элементов, у которых идет достройка 5/-орбитали. Торий и уран давно известны и сравнительно широко распространены в природе. Большинство других актиноидов получают либо искусственным путем при ядерпых реакциях, либо в результате радиоактивного распада. По химическим свойствам актиноиды делятся на две подгруппы легкие и тяжелые . По химическим свойствам тяжелые актиноиды аналогичны лантаноидам. Степень окисления актиноидов в основном определяют 75 6с -электроны. Уран, нептуний, плутоний, америций имеют основные степени окисления +4, +5, и +6, и только эти ионы определяют методами прямой кулонометрии. Разработаны методики анализа ППК сплавов U—А1 [214], урановых стандартов [215], урано-нептуниевых сплавов [216], растворов нитрата урана [217], оксидов урана [218, 219], смесей ТЬОг и UO2, топлива для ядерных реакторов [220—225, 231]. Во всех случаях после химического растворения образца предварительно электролитически восстанавливают до на ртутном или платиновом электроде. [c.66]

    При исследовании процесса деления урана Мак-Миллан обнаружил наведенную ]нейтронами -активность, которая падала вдвое за 2,3 суток. Эта активность в дальнейшем была идентифицирована химически Мак-Милланом и Эйблсоном как принадлежащая одному из изотопов ового, 93-го элемента, поскольку ее химические свойства отличались от химических свойств всех других элементов. В частности, было показано, что новый элемент в высшей степени окисления не соосаждается со фторидами редкоземельных элементов и в то же время его свойства не идентичны свойствам урана (VI). Новый элемент в соответствии с традицией, начало которой положил Клапрот, был назван нептунием. [c.300]

    Двуокись нептуния Np02 получают прокаливанием на воздухе при 700—800° С гидроокиси, пероксида, оксалата, нитрата и некоторых других соединений нептуния в любой степени окисления. Обычно этот окисел представляет собой порошок зеленоватого цвета. Другой вид окисла приготовлен прокаливанием гидроокиси нептуния (V) при низкой температуре с последующим нагреванием в аргоне при 600° С [344]. Это блестящие черные частицы с плотностью 5,2 г/сж . Обе формы дают подобные рентгенограммы, отвечающие кубической решетке типа флюорита. Период решетки а—5,422 А. По химическим свойствам Np02 во многом напоминает U02 растворима в концентрированных кислотах. Окислители (КВгОз) значительно ускоряют растворение, часто их присутствие необходимо, так как растворение прокаленной двуокиси нептуния происходит медленно. [c.305]

    I) группа уранидов — нептуний, плутоний, америций это элементы, химия которых близка к химии урана, и 2) группа кюридов —элементы от кюрия до лоуренсия по своим химическим свойствам они — аналоги. лантана. [c.394]


Смотреть страницы где упоминается термин Нептуний химические свойства: [c.106]    [c.106]    [c.152]    [c.146]    [c.179]    [c.165]    [c.3]    [c.388]   
Основы общей химии Том 2 (1967) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Нептун

Нептуний



© 2025 chem21.info Реклама на сайте