Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионов отрицательных разрушение

    Определение энтальпии растворения соли. При растворении в воде кристаллической соли совершаются многочисленные химические процессы. Важнейшие из них разрушение кристаллической решетки (АЯ>0) и взаимодействие ионов с молекулами воды (АЯсО). В зависимости от того, какая из энтальпий преобладает, суммарное изменение энтальпии будет иметь или положительный или отрицательный знак. [c.132]


    Четвертая группа объединяет вещества, образующие с водой растворы электролитов. В соответствии с теорией электролитической диссоциации молекулы веществ с ионной или сильно полярной связью под влиянием полярной структуры молекул воды распадаются на ионы. Работа разрушения кристаллических структур производится главным образом в результате процесса гидратации. Ионно-дипольное взаимодействие наиболее интенсивно при гидратации катионов. При гидратации анионов со значительным отрицательным зарядом или малым радиусом более специфично присоединение молекул воды за счет водородных связей. [c.59]

    Внешней цепью указанного гальванического элемента является изолированный проводник, с помощью которого протектор присоединен к оболочке, а внутренней цепью — раствор электролита почвы. В электролите вследствие движения ионов происходит разрушение протектора, что приводит к уменьщению или прекращению процесса коррозии оболочки, так как на ней образуется отрицательный потенциал. При минимальной защитной разности потенциалов оболочка — земля коррозия оболочки практически прекращается. [c.131]

    Положительные ионы, доходя до некоронирующего электрода — катода, вызывают выход из последнего свободных вторичных электронов. Эти электроны образуют с частицами газа отрицательные ионы. Отрицательные ионы доходят через внешнюю область коронного разряда до границы коронирующего слоя и, ускоряясь здесь в сильном поле, распадаются при столкновениях на нейтральные частицы газа и свободные электроны, служащие родоначальниками лавин в коронирующем слое. Детализируя этот процесс, необходимо допустить, что на некотором расстоянии внутри коронирующего слоя, т. е. в некотором интервале напряжённости поля, происходит как разрушение, так и образование отрицательных ионов, так что в положительном коронирующем слое, так же как и в отрицательном, можно выделить наружный участок, в котором отношение концентрации отрицательных ионов к общей концентрации отрицательно заряженных частиц изменяется от единицы до нуля при перемещении по направлению к коронирующему проводу, и внутренний участок коронирующего слоя, в котором концентрация отрицательных ионов равна нулю и все отрицательно заряженные частицы являются электронами. [c.609]

    Правило 10. При применении правила 8 простейший путь — разрушение ближайшего вышестоящего целого или избыточного (отрицательные ионы) уровня, а при применении правила 9 простейший путь — достройка ближайшего нижестоящего нецелого уровня. [c.201]


    Рассмотрим коррозионное разрушение закладных металлических конструкций (трубы, детали фундаментов, кабели) под действием утечки тока, например, с трамвайного рельсового пути, который заглублен в грунт и может иметь высокое электрическое сопротивление за счет плохо проводящих электрический ток стыков рельс. В этом случае при хорошо проводящей влажной почве возможно разветвление тока, причем часть его пойдет через почву кратчайшим путем. На рис. 243 показана схема ответвления тока с трамвайного рельса, который является обычно отрицательным полюсом (+ на проводе). На пути так называемого блуждающего тока может находиться металлическое сооружение—плохо изолированная труба. Примем условно, что электролит, пропитывающий почву, содержит ионы С1 , Ре + и Ыа +. Электроны, выходящие [c.520]

    Появление анодной поляризации можно связать с замедленностью одной из стадий транспортировки, разрушения твердой фазы или ионизации, являющихся обращением соответствующих стадий катодного процесса. При катодном выделении металлов замедленность транспортировки, т. е. недостаточная начальная скорость доставки разряжающихся ионов к электроду, смещает его потенциал в отрицательную сторону. При анодном растворении металла замедленность стадии отвода приводит к накоплению перешедших в раствор ионов вблизи электрода и, соответственно, смещает его потенциал в положительную сторону. [c.476]

    Для разрушения разбавленных эмульсий, не стабилизированных эмульгаторами, достаточно ввести небольшое количество электролитов для снижения электрокинетического потенциала, которое приводит к коалесценции. Так, чтобы разрушить эмульсию масла в конденсате паровых машин, вводят А12(804)з. Будет ли заряд шариков масла положительным или отрицательным, В качестве противоионов будут выступать поливалентные ионы или 80 -. Для разрушения стабилизированных эмульсий в них вводят деэмульгатор — поверхностно-активное вещество, которое вытесняете поверхности раздела эмульгатор. [c.451]

    Такая температурная зависимость ближней сольватации Ы связана с разрушением структуры спиртов, происходящим при повышении температуры. Более низкое значение температуры, при которой изменяется знак ближней сольватации у этанольных растворов по сравнению с наблюдаемой в метанольных, обусловлено тем, что при данной температуре метанол более структурирован, чем этанол. Отрицательная ближняя гидратация ионов сменяется положительной и в воде при повышении ее температуры. Вследствие того что с повышением температуры собственная структура воды разрушается тепловым движением молекул, такие ионы, как K Сз" и МОз", становятся менее отрицательно гидратированными. При некоторой температуре их гидратация сменяется на положительную. При этом чем сильнее выражена отрицательная гидратация, тем большее разрушение структуры воды требуется для перехода иона из области отрицательной гидратации в область положительной. [c.276]

    При питтинговой коррозии основное коррозионное разрушение локализуется на отдельных небольших участках металла (магний, алюминий, железо, никель, титан и др.) и протекает с большой скоростью, что может приводить к сквозной точечной коррозии металла. Питтинговая коррозия наблюдается, обычно, когда основной металл находится в пассивном состоянии. Ионы-активаторы (СГ, Вг , I") адсорбируются в основном на участках поверхности, где плеяка оксида несовершенна (металлические или неметаллические включения, искажающие или нарушающие кристаллическую структуру оксида) [22]. Анионы частично замещают кислород в оксиде и образуют хорошо растворимые поверхностные комплексные ионы. Пассивная пленка нарушается, и металл начинает непосредственно контактировать с раствором. Потенциал металла на этих участках имеет более отрицательное значение, чем потенциал основного металла, покрытого оксидной пленкой, что приводит к возникновению локальных токов. Если пассивная пленка не обладает большим омическим сопротивлением, то система заполяризовывается и на участках питтингообразования в основном протекает интенсивно анодный процесс, а катодный процесс восстановления окислителя идет на пассивной поверхности металла. При этом миграция анионов-активаторов идет в основном к участкам питтингообразования. [c.38]

    Образовавшиеся отрицательные ионы анализируемых молекул (или их частей, если захват сопровождается разрушением) легко рекомбинируют с ионами азота [c.62]

    Разрушение кристаллической решетки на свободные ионы — процесс эндотермический (АЯрещ, > 0) гидратации ионов — процесс экзотермический (АЯгидр < 0). Таким образом, в зависимости от соотношения значений АЯр и АЯр др тепловой эффект растворения может иметь как положительное, так и отрицательное значение. Так, растворение кристаллического гидроксида калия сопровождается выделением теплоты, т. е. на разрушение кристаллической решетки КОН требуется меньше энергии (АЯреш = 790,5 кДж/моль), чем ее выделяется при гидратации ионов (АЯгидр.к+ [c.169]


    При атмосферной коррозии на металле сначала образуется водяная пленка. Она содержит некоторые растворенные вещества (соли, СО2, Нг5 и др.), и, таким образом, является электролитом. Происходящее затем разрушение металла обусловлено обменом ионами между металлом и раствором с участием электронов. Иными словами, возникают процессы, подобные происходящим в гальванических элементах. Они представляют собой совокупность катодных и анодных реакций. При анодных реакциях ионы металла из кристаллической решетки переходят в раствор. Металл заряжается отрицательно, так как в нем остаются избыточные электроны. Дальнейшее протекание процесса обусловлено удалением (нейтрализацией) этих электронов, т. е. протеканием катодных реакций. Таким процессом может быть, например, соединение электронов с ионами водорода или с газообразным кислородом по одной из следующих реакций  [c.272]

    Отрицательное влияние на электролиз с ртутным катодом оказывают твердые примеси, которые могут попадать в рассол, подвергаемый электролизу, например, частицы графита, образующиеся при разрушении анодов. Ионы некоторых металлов могут восстанавливаться на ртутном катоде с образованием соответствующих амальгам или металлов в коллоидной форме. Эти примеси образуют так называемое амальгамное масло. Оно легче ртути и всплывает на поверхность катода, образуя участки с интенсивным выделением водорода,, что может вызывать короткие замыкания. [c.165]

    В промышленности для разрушения аэрозолей с целью очистки газовых смесей широко используют действие электрического поля (метод Коттреля). В электрофильтре Коттреля при пропускании дыма или тувк1ана через электрическое поле высокого напряжения частицам аэрозоля сообщается заряд. Заряжение частиц, вызванное адсорбцией ионов, возникающих в результате ионизации воздуха при коронном разряде (преимущественно отрицательных ионов), обеспечивает электро( юрез и осаждение частиц на аноде. [c.335]

    Последнее связано с тем, что процессы гидратации ионов металла и подвода деполяризатора к поверхности металла замедляются под воздействием магнитного поля. Ускорение поляризации при магнитной обработке преобладает над процессом увеличения термодинамической нестабильности металла (сдвиг потенциала в область более отрицательных значений), в результате чего скорость коррозии замедляется. Так, образец, экспонированный в обработанной магнитным полем среде, подвергся значительно меньшему разрушению, нежели тот, что находился в необработанной среде (рис. 2.5). [c.42]

    КАТАЛИЗ (греч. katalysls — разрушение) — изменение скорости химической реакции в присутствии катализатора, сохраняющего свой состав в процессе реакции. К. может быть положительным (когда скорость реакции увеличивается) и отрицательным (когда скорость уменьшается или реакция совсем прекращается). Явление К. используется для ускорения химической реакции и направления ее в сторону образования желаемых продуктов без затраты энергии. Действие катализатора на химическую реакцию заключается в промежуточном взаимодействии его с реагирующими веществами. Например, каталитическое разложение пероксида водорода воль-фрамат-ионами проходит через образование промежуточных соединений по схеме  [c.122]

    Изучая структуру и характер образования продуктов коррозии на стали в атмосферных условиях, некоторые исследователи пришли к выводу, что новые слои могут образоваться не только на поверхности, но и в толще ранее образовавшегося слоя. В результате происходит расслоение продуктов коррозии в плоскости, параллельной поверхности стали, что отрицательно влияет на защитные свойства возникающих пленок и приводит к ускорению разрушения металла. Такой послойный механизм образования новых продуктов коррозии объясняется встречной диффузией ионов металла кислорода и воды через ранее образованные слои. Место их формирования зависит от степени увлажнения защитной пленки и продуктов коррозии. При влажной пленке новые продукты коррозии образуются на ее поверхности, а при относительно сухой — вблизи поверхности стали [36]. [c.12]

    В многоэлектродной системе металл, обладающий наибольшим отрицательным потенциалом, является анодом, а металл с наиболее положительным потенциалом — катодом [79]. При этом скорость контактной коррозии зависит от разности потенциалов и поляризуемости каждого электрода. Поэтому, как было показано И. Л. Розенфельдом, при одной и той же разности потенциалов можно наблюдать различные скорости контактной коррозии [80]. Контактная коррозия может проявиться и при наличии в электролите ионов более благородных металлов, осевших на поверхности менее благородного металла [58]. Известно, что осаждение ионов меди на поверхности алюминия, железа и оцинкованного железа вызывает разрушение последних [58]. [c.82]

    В случае отрицательного разностного эффекта возможны две различные причины, вызывающие увеличение, скорости саморастворения при анодной поляризации. Одной из них служит частичное разрушение защитной пленки. В связи с этим возрастает относительная доля анодной зоны корродирующей поверхности металла. Таким путем, в частности, объясняется увеличение скорости коррозии алюминия в нейтральном растворе при его контакте с медью. Вообще подобный механизм воздействия анодного тока возможен только по отношению к металлам, корродирующим с образованием на их поверхности защитных пленок. Однако иногда явление отрицательного разностного эффекта наблюдается и при коррозии 1В кислых растворах,. где образование таких пленок невозможно. Причиной данного эффекта. может стать ступенчатое протекание процесса ионизации металла, благодаря которому вначале в раствор переходят однозарядные ионы металла с последующим их окислением в растворе по реакции [c.155]

    Наибольшими температурами плавления и кипения обладают вещества, в узлах кристаллической решетки которых расположены ионы. Это объясняется сильным электростатическим взаимодействием положительных и отрицательных ионов. Силы же отталкивания одноименных ионов значительно меньше, т. к. расположены на больших расстояниях друг от друга. Вследствие этого все вещества, имеющие ионные кристаллические решетки, обладают высокими значениями ее энергий образования. Ионная связь осуществляется в галогенидах, оксидах и в солях типа нитратов, сульфатов и т.п. Для разрушения ионных кристаллов требуется значительная тепловая энергия, что и определяет высокие температуры плавления и кипения, которые, в свою очередь, будут [c.46]

    Д раствД- гидр при растворении солей и гидратации ионов —Т А5//), (—их ионных составляющих характерно явление знакопеременности, зависящей от температуры и природы соли (ионов). Отрицательные значения этих величин благоприятствуют, а положительные — противодействуют процессу растворения. Понижение температуры за счет структурных изменений растворителя благоприятствует, а повышение — противодействует процессу растворения. Это связано с разрушением под действием температуры структуры воды и увеличением связанности ее молекул при гидратации ионов. Для солей (например, КВг, Сз1, Т1Л"0д, HN4NOз), характеризующихся знакопеременностью (А р (, з), при некоторой предельной температуре вклад этой составляющей равен нулю. [c.256]

    Теплота растворения твердого соединения с ионной кристаллической решеткой определяется в основном суммой двух величин теплоты Разрушения кристаллической решетки и теплоты сольватации ионов молекулами растворителя. В связи с тем, что на разрушение кристалла теплота затрачивается, а процесс сольватации сопровождается выделением 7еплоты, знак теплоты растворения может оказаться как положительным, так и отрицательным в зависимости от того, какое из двух слагаемых больше по абсолютной величине. Например, при растворении 1 моль u l -SHaO в 8 моль [c.93]

    Для проведения групповых реакций в делительную воронку помещают несколько кубических сантиметров исследуемого раствора при соответствующих условиях (pH, присутствие маскирующих веществ и т. д.) и встряхивают о раствором реактива. Отрицательный эффект реакции свидетельствует об отсутствии в растворе ионов металлов, относящихся к данной группе. При измене,нии окраски раствора дитизона можно уже по окраске экстракта или образующихся хлопьев сделать выгод а присутствии в растворе определенного иона металла. Дополнительные реакции обнаружения ионов можно провести в органическом экстракте или в водной фазе. Кроме того, ионы металлов, находящиеся в результате в экстрактах различных групп, после разрушения дитизо,на можно идентифицировать другими способами, например по образованию кристаллов. [c.84]

    Фронт катионов удерживает иа некотором расстоянии от себя одноименно заряженные катионы водорода, не давая им возможности вступить в контакт с металлом, поэтому восстановление катиона водорода за счет электронов железа затруднено. Это и предохраняет чистый металл от коррозии в нейтральных и кислых средах. Однако практически образцы технического железа претерпевают разрушение. Причиной этого является неоднородность технического железа, которое содержит зерна углерода (графита), цементита (РезС), шлака и другие инородные включения, не посылающие в раствор положительно заряженных ионов, но в то л е время являющиеся электронными проводниками. Электроны металла переходят на включения и заряжают их отрицательно. На новерх-ности включений катионы водорода не встречают барьера из положительных ионов, поэтому и разряжаются по схеме 2Н+ + 2е = = 2Н 2Н->Н2. [c.175]

    Энергия кристаллической решетки является положительной величиной, поскольку согласно определению это энергия разрушения решетии. Энергия образования решетки из свободных ионов имеет ту же величину, но она отрицательна. [c.265]

    При растворении твердого вещества в жидкости происходит разрушение кристаллической решетки твердого тела этот процесс требует затраты значительной энергии. Переходящие в раствор молекулы или ионы взаимодействуют с молекулами растворителя, образуя гидраты (если растворитель — вода) или сольваты (в случае любого растворителя) этот процесс сопровождается выделением энергии. Суммарная теплота растворения Q — Осолъв— реш- Для большинства твердых веществ энергия разрушения кристаллической решетки (Среш) больше энергии сольватации (Р ольв) и поэтому теплота растворения — отрицательная величина, т. е. растворение твердых веществ сопровождается, в большинстве случаев,, поглощением тепла. [c.77]

    Увеличение отрицательного заряда поверхности электрода уменьшает количество адсорбированных на нем ионов Р1С14 , причем этот эффект мало зависит от общей концентрации электролита в растворе. Это и обусловливает появление минимумов на полярограммах в присутствии большого избытка фона. При восстановлении анионов 820 -, Ре(СМ) , Н (СН4) , Сг(СЫ8) , как и при восстановлении анионов Р1С1 , эффективность влияния катионов фона возрастает с увеличением их радиуса и заряда. Подобное влияние радиуса катионов фона на скорость восстановления анионов на отрицательно заряженной поверхности объясняется образованием мостиков из адсорбированного на электроде катиона и притянутого им аниона. Адсорбция катионов, по-видимому, сопровождается частичным разрушением гидратной оболочки катиона (рис. 98). Предположение о существенной роли подобных мостиков подтверждается низкими значениями температурного коэффициента реакции восстановления анионов ЗгОз и Ре(СЫ)б в области минимальных токов на поляризационных кривых. С повышением температуры часть мостиков на поверхности электрода разрушается, что приводит к уменьшению кажущейся энергии активации (температурного коэффициента) реакции восстановления анионов. [c.404]

    А. Т. Баграмян с сотрудниками изучал влияние pH на катодный процесс при электроосаждении сурьмы из виннокислых растворов. При повышении pH раствора потенциал восстановления сурьмы вначале резко смещается в отрицательную область ( на 0,5 в), а затем почти не меняется. Перегиб кривой ф — pH зависит от плотности тока и гидродинамического режима электролиза. Установлено, что pH прикатодного слоя увеличивается в процессе электролиза, хотя осаждение сурьмы не сопровождается выделением водорода. Расход ионов Н3О+ объясняется специфической структурой восстанавливающихся ионов металла. Концентрационные изменения прикатодного слоя приводят к разрушению виннокислого комплекса сурьмы с образованием ЗЬгОз-лгНаО, которая тормозит восстановление ионов металла и является причиной изменения структуры катодного осадка. [c.513]

    Карбонат-гидроксидная теория КР [118], предложенная сотрудниками института Баттеля (США), базируется на основных представлениях традиционной карбонатной" теории. В гидроксид-карбонатных растворах пики токов анодного растворения находятся в области более отрицательных потенциалов по сравнению с соответствующими потенциалами, выявляемыми в карбонат-бикарбонатной среде. С повышением концентрации гидроксил-ионов узкая область потенциалов КР расширяется, достигая регламентированных значений потенциалов катодной защиты. Однако анализ катодных отложений на поверхности магистральных газопроводов, выполненный авторами указанного исследования, а также в УГНТУ. позволяет отнести только незначительное число разрушений по причине КР к гидрооксид-карбонатному растрескиванию в связи с отсутствием в большинстве случаев в их составе гидроксидов. [c.73]

    При хранении свинцовый аккумулятор теряет около 1% емкости в сутки. Основная причина саморазряда — коррозия губчатого свинца из-за воздействия вредных примесей в электроде и в электролите. К этим примесям относятся металлы с малым перенапряжением выделения водорода (Ре, Си, Аз, ЗЬ, Р1 и др.), ускоряющие коррозию с водородной деполяризацией. Сурьма и мышьяк появляются в электролите в результате разрушения решетки положительной пластины, а затем катодно выделяются на отрицательном электроде. Вредны металлы, которые могут образовать ионы переменной валентности, например М.пОс и Мп04 , Ре + и Ре +. Так, при взаимодействии с [c.88]

    В этих полостях располагаются ионы М и компенсирующие отрицательный заряд алюмокремнекислородных тетраэдров, и в них могут внедряться молекулы воды. Содержание воды зависит от давления водяного пара. Цеолиты способны обменивать воду на другие вещества (спирт, аммиак и т.д.). При осторожном нагревании вода постепенно удаляется, и даже полное обезвоживание не приводит к разрушению кристаллической решетки цеолита. [c.496]

    На поведение алюминия как амфотерного металла значительное влияние оказывает и pH. В период фотосинтеза pH морской воды равен 9,7 [85]. Поэтому наряду с депассивирующим действием хлор-ионов и щелочность морской воды способствует разрушению защитной пленки на поверхности алюминия. В результате этого установление отрицательных значений потенциала на алюминиевых сплавах в морской воде вполне закономерно. [c.55]

    Ле Буше [118,120] и Лакомб [119] также связывают стимулирующее действие сероводорода с каталитическими свойствами ионов Н5 Ионы Н5 удерживаются на поверхности железа хемосорбционными силами. Электронная пара серы может переходить на орбиту железа, давая хемосорбционную связь, она может быть поляризована электрическим полем на поверхности раздела металл-раствор. Связь между поверхностными атомами металла и ионами Н5 может усиливаться при положительных потенциалах и ослабляться при отрицательных потенциалах. Каталитическая активность ионов Н5 в катодном процес-1 се высока, когда энергия адсорбции мала (отрицательные потенциалы) и, напротив, может уменьшаться до нуля, когда энергия адсорбции высока (положительные потенциалы). Взаимодействие между хемосорбированными ионами Н5 и ионами водорода приводит к образованию промежуточной Н—5 Н молекулы, которая после разрушения [c.59]

    Нри растворепии электролитов происходит разрушение кристаллической решетки растворяемого вещества, связанное с затратой энергии, и сольватация ионов. Наблюдаемый тепловой эффект является алгебраической суммой теплоты разрушения кристаллической решетки, которая всегда отрицательна, и теплоты сольватации  [c.12]

    При электрохимической коррозии происходят электрохими-ческпе процессы, связанные с возникиовением в металле или сплаве на определенных участках микрогальвапнческих пар под действием электролита и разности электрохимических потенциалов отдельных структурных составляющ нх металла. В результате этого возникает электрический ток, происходит передвижение электронов от одного участка металла к другому п взаимодействие нх с положительно заряженными ионами раствора (катионами). Атомы металла теряют при этом электроны и образуют положительно заряженные ноны (катионы), при взаимодействии которых с отрицательно заряженными иопами электролита (анионами) происходит разрушение металлов — коррозия и образование окислов на поверхности металла. Электрохимическая коррозия происходит и при контакте двух разных металлов [c.11]

    Для преодоления электростатических сил, удерживающих ионную решетку, необходима большая энергия. Как правило, только вода и некоторые сильнополярные растворители хорошо растворяют ионные соединения. Какого же типа связи образуются между ионами и растворителем типа воды Молекула воды сильно полярна она имеет положительный и отрицательный концы. С1едовательно, существует электростатическое притяжение между положительным ионом и отрицательным концом молекулы воды и между отрицательным ионом и положительным концом молекулы воды. Такие взаимодействия называются ион-дипольными взаимодействиями. Каждая ион-дипольная связь относительно слаба, но в сумме они дают достаточно энергии для разрушения межионных сил в кристалле. В растворе каждый ион окружен груп- [c.31]


Смотреть страницы где упоминается термин Ионов отрицательных разрушение: [c.336]    [c.354]    [c.253]    [c.402]    [c.185]    [c.39]    [c.214]    [c.236]    [c.258]    [c.173]    [c.26]    [c.142]    [c.123]   
Электрические явления в газах и вакууме (1950) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

отрицательная



© 2024 chem21.info Реклама на сайте