Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная атмосфера образования

    Недостатки теории Дебая — Гюккеля — Онзагера связаны с несовершенствами и ограниченностью ее теоретических допущений, рассматривающих лишь электростатическое взаимодействие ионов и усредненное влияние окружающей среды. В современных теориях концентрированных растворов электролитов, кроме образования различных ассоциатов, учитываются сольватация ионов и их конечные размеры, асимметричность распределения концентрации в движущейся ионной атмосфере, локальные изменения вязкости вблизи ионов, взаимодействие электрофоретического и релаксационного торможения и другие эффекты. Очевидно, что уточненные исследования растворов электролитов возможны лишь с учетом всей сложности их строения и разнообразных взаимодействий. [c.225]


    В современных теориях электропроводности концентрированных растворов электролитов помимо конечных размеров ионов учитываются взаимодействие релаксационного и электрофоретического эффектов, локальные изменения вязкости вблизи ионов, асимметричность распределения концентрации в движущейся ионной атмосфере, образование ионных ассоциатов и другие эффекты. Однако чрезвычайная сложность этих теорий и громоздкий вид окончательных уравнений препятствуют их практическому использованию. [c.74]

    В процессе образования гидрофобного золя рост ядра в той или иной стадии может быть приостановлен созданием так называемого адсорбционного слоя из ионов стабилизатора. Ионная сфера вокруг ядра коллоидной мицеллы состоит из двух слоев (или двух сфер) — адсорбционного и диффузного. Адсорбционный слой слагается из слоя потенциалопределяющих ионов, адсорбированных на поверхности ядра и сообщающих ему свой заряд, и части противоионов, проникших за плоскость скольжения и наиболее прочно связанных электростатическими силами притяжения. Вместе с ядром эта ионная атмосфера образует как бы отдельный гигантских размеров многозарядный ион — катион или анион, называемый гранулой. Диффузный слой, расположенный за плоскостью скольжения, в отличие от адсорбционного не имеет в дисперсионной фазе резко очерченной границы. Этот слой состоит из противоионов, общее число которых равняется в среднем разности между всем числом потенциалопределяющих ионов и числом противоионов, находящихся в адсорбционном слое. [c.318]

    Проинтегрировав выражение (XVI, 39), получим энергию образования ионной атмосферы  [c.410]

    В основу теории положена идея о наличии вокруг каждого иона ионной атмосферы. Образование ионной атмосферы объясняется тем, что одноименно заряженные ионы взаимно отталкиваются, а разноименно заряженные взаимно притягиваются. Поэтому каждый ион окружается ионами противоположного знака. Ионная атмосфера содержит и положительные, и отрицательные ионы, однако в среднем вокруг каждого положительного иона имеется избыток отрицательных ионов, а вокруг каждого отрицательного — избыток положительных. Плотность ионной атмосферы максимальна у центрального иона, с удалением от него уменьшается. На определенном расстоянии, которое можно считать границей ионной атмосферы, количество ионов каждого знака становится одинаковым. Размер и плотность ионной атмосферы Дебай и Хюккель связали с термодинамическими свойствами растворов электролитов. В частности, [c.132]


    Перемещение центрального иона под действием электрического поля выводит его из центра прежней ионной атмосферы, которая затем разрушается за счет теплового движения ионов, а вокруг следующего положения центрального иона образуется новая ионная атмосфера. Образование и разрушение ионной атмосферы происходят с большой, но конечной скоростью, поэтому заряд ионной атмосферы впереди движущегося иона всегда меньше, чем позади него. Такая несимметричность ионной атмосферы приводит к возникновению релаксационного торможения и к уменьшению электрической проводимости на величину Д 2- [c.223]

    В 20-х годах XX в. своеобразную теорию выдвинули Дебай и Гюк-кель. В основе их теории лежит представление об ионных атмосферах, образованных ионами противоположных зарядов, окружающих каждый ион взаимодействие ионов заменялось, таким образом, взаимодействием их ионных атмосфер. [c.259]

    Дебай п Гюккель вывели формулы для Я) и %2, в которые входит одна эмпирическая константа. Их расчеты были улучшены в дальнейшем Онзагером. Он учел, что движение ионов ие совершается по прямой и что ионная атмосфера представляет собой статистическое образование. Уравнение Онзагера имеет следующий вид  [c.123]

    Работа образования ионной атмосферы 409 [c.409]

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]

    Релаксационный эффект связан с существованием ионной атмосферы и ее влиянием на движение ионов. При перемещении под действием внешнего электрического поля центральный ион выходит из центра ионной атмосферы, которая вновь воссоздается в новом положении иона. Образование и разрушение ионной атмосферы протекает с большой, но конечной скоростью, характеристикой которой служит время релаксации. Это время может рассматриваться как величина, обратная константе скорости создания или разрушения ионной атмосферы. Время релаксации зависит от ионной силы раствора, его вязкости и диэлектрической проницаемости. Для водного раствора одно-одновалентного электролита время релаксации т выражается [c.261]

    Диффузный двойной слой образован ионами, которые расположены в растворе на некотором расстоянии от поверхности электрода, которое больше радиуса иона. Такое расположение ионов, так же как и в ионной атмосфере, получается под влиянием двух противоположных факторов электростатических сил, которые стремятся притянуть ионы плотно к поверхности электрода, и теплового движения, которое стремится расположить ионы хаотически в растворе. В результате ионы, входящие в состав [c.301]

    С другой стороны, перемещение центрального иона и ионной атмосферы в противоположных направлениях связано с тем, что как только ион выходит за пределы ионной атмосферы, последняя должна разрушиться, а вокруг иона должна возникнуть новая ионная атмосфера. Скорость этого процесса определяется временем релаксации Тр — величиной, обратной константе скорости образования или разрушения ионной атмосферы  [c.40]

    При двин<ении любого иона нарушается сферическая симметрия его ионной атмосферы. Рассеивание существующей и образование новой атмосферы вокруг движущегося иона происходит не мгновенно, для восстановления ее требуется некоторое время, так называемое время релаксации. В результате при движении иона впереди него ионная атмосфера не успевает сформироваться, а позади не успевает полностью разрушиться, в связи с чем плотность противоположного заряда впереди движущегося иона несколько понижена, а позади — повышена. Некоторый избыток противоположных зарядов позади иона вызывает так называемое релаксационное торможение. [c.186]

    В растворе электролита вблизи каждого иона сосредоточивается больше ионов противоположного знака, чем ионов одноименного. Образованию такой ионной атмосферы благоприятствуют более высокий потенциал иона 1 з и увеличение его заряда размыванию (разрушению) ионной атмосферы благоприятствует увеличение температуры. [c.331]


    Наложение внешнего электрического поля нарушает симметричность ионной атмосферы (рис. 9.3,6), так как центральный ион и ионная атмосфера движутся в противоположных направлениях. Вокруг центрального иона начинает группироваться новая ионная атмосфера, а старая — разрушается. На разрушение старой и образование новой ионной атмосферы требуется время, называемое временем релаксации. Позади движущегося иона оказывается избыток ионов противоположного знака, электростатически тормозящих центральный ион. Такое торможение называется релаксационным (релаксационный эффект). При движении ионная атмосфера увлекает за собой молекулы растворителя, поэтому среда, в которой движется центральный ион, перемещается ему навстречу. Этот вид торможения называется электрофоретическим (электрофоретический эффект). [c.66]

    Предположение об электростатическом взаимодействии ионов объясняет отличие растворов сильных электролитов от идеальных. Вычисляя работу образования ионной атмосферы, можно количественно оценить степень отклонения от идеального состояния и найти коэффициент активности электролита. В результате получается уравнение предельного закона Дебая—Гюккеля, справедливое для сильно разбавленных бинарных растворов сильных электролитов  [c.214]

    К частному случаю коагуляции электролитами относится взаимная коагуляция двух гидрофобных коллоидов с различными знаками зарядов. Здесь перекрытие ионных атмосфер способствует притяжению коллоидных частиц. Расстояние между частицами, при котором происходит взаимная коагуляция, во много раз больше радиусов частиц. Наиболее полная коагуляция наблюдается при взаимной нейтрализации зарядов частиц. При избытке одного из золей возможно перераспределение ионов и образование измененных двойных слоев вокруг частиц. Система в целом может быть устойчивой со знаком заряда избыточного коллоида. [c.87]

    Поведение незаряженных частиц как в идеальном, так и в реальном приближении достаточно строго описывается известными термодинамическими соотношениями. Очевидно, что в данном случае задача сводится к отысканию той части свободной энергии Гельмгольца для раствора сильного электролита, которая обусловлена действием зарядов, т. е. межионным взаимодействием, связанным с образованием ионных атмосфер и эффектом их взаимодействия. [c.391]

    Оценка релаксационного эффекта требует прежде всего выяснения времени релаксации, характеризующего продолжительность образования ионной атмосферы. Время образования ионной атмосферы приблизительно равно времени, необходимому для диффузионного перемещения иона за счет теплового движения на расстоянии радиуса ионной атмосферы Я. [c.406]

    Однако падение степени диссоциации объясняется не образованием молекул, а увеличением тормозящего действия ионной атмосферы. В связи с этим, определяемое по электрической проводимости (или другими методами) значение степени диссоциации сильных электролитов называется кажущейся степенью диссоциации. [c.240]

    Теория Дебая и Гюккеля учитывает только кулоновское ион — ионное взаимодействие и игнорирует другие виды взаимодействий (например, ион — дипольное взаимодействие, образование ассоциа-тов, комплексов и т. д.). Во втором приближении П. Дебай и Э. Гюк-кель учли собственные размеры ионов. Для этого константа интегрирования Ау в уравнении (111.36) была взята в соответствии с формулой (П1.40), а потенциал ионной атмосферы определялся как предел 1ф—фЛг- а- Окончательный результат для среднего коэффициента активности имеет вид [c.40]

    Работа, которую надо затратить для того, чтобы вывести центральный ион из его ионной атмосферы или, наоборот, поместить центральный ион внутрь такой оболочки (при постоянном давлении), равна dFe drii) = iig, т. е. равна изменению свободной энергии Гиббса, обусловленной электростатическим взаимодействием иона i с его оболочкой. Это взаимодействие равно произведению потенциала оболочки г )а. иона i на заряд иона ipa.Zie.-Суммирование по всем ионам г-го типа в растворе привело бы к тому, что взаимодействие каждого иона г-го типа было бы учтено дважды один раз, когда данный ион рассматривается как центральный ион, и другой раз, когда этот же ион расположен на оболочке, образованной вокруг другого центрального иона. [c.448]

    В результате электростатического взаимодействия вокруг любого иона, выбранного в качестве центрального, будут преимущественно встречаться ионы противоположного по отношению к нему заряда, а ионы, одноименно заряженные, будут встречаться менее часто. Однако такое предпочтительное распределение ионов постоянно разрушается тепловым движением. Поэтому образование вокруг центрального иона сферы (называемой ионной атмосферой), содержащей предпочтительно ионы противоположного заряда, можно представить только как статистическое, среднее во времени явление. [c.164]

    Экспериментально определяемая степень диссоциации сильных электролитов оказывается меньше истинной (100%), поэтому ее принято называть кажущейся. Заниженность результатов измерений объясняется уменьшением подвижности ионов из-за наличия вокруг каждого из них ионной атмосферы, образованной противоположно заряженны.ми ионами. Такая частичная связанность ионов как бы сни- [c.210]

    Применительно к сильным электролитам эффект Вина можно объяснить на основе теории электропроводности Дебая — Онзаге-ра. Согласно представлениям Де(5ая и Гюккеля в растворе каждый ион окружен НОННОЙ атмосферой с радиусом 1/А,. Пока скорость его движения мала (по сравнению со скоростью разрушения и образования ионной атмосферы), тормозящие эффекты, связанные с ионной атмосферой, сохраняются и электропроводность ири данной концентрации равна [c.126]

    Существование расклинивающего давления было впервые установлено прЪ проведении экспернментов с жидкими прослойка.ми между слюдяными листочками [1], со смачивающими пленками, образующимися между твердыми пластинками и прижимаемыми к ним пузырьками газа [2], и при изучении равновесного состояния свободных пленок между двумя пузырьками [3], а само понятие расклинивающее давление впервые сформулировано Дерягиным. В дальнейшем были рассмотрены различные слагающие расклинивающего давления, зависящие от перекрывания зон действия поверхностных сил и эффектов р азлич-ной природы. В первую очередь была рассмотрена ионно-электростатическая сл агающая, возникающая при перекрывании диффузных ионных атмосфер, образованных на обеих поверхностях прослойки. [c.549]

    Возможность образования различных ассоциатов совершенно не укладывается в рамки теории Дебая — Гюккеля, согласно которой единственным результатом электростатического взаимодействия является возникновение ионной атмосферы. Невозможность, по крайней мере в настояш,ее время, построения теории, адекватно отражающей природу растворов электролитов, привела, как уже отмечалось, к использованию эмпирических и иолуэмиирических уравиений. К наиболее часто применяемым уравнениям подобного рода относятся формулы Гюнтельберга [c.99]

    В иолиэлектролитах крупные ионы образуются за счет последовательной ступенчатой диссоциации ионогенных групп, входящих в состав макромолекул, а образующиеся при этом ионы вместе с ионами обычных электролитов, присутствующими в растворе, распределяются в виде ионной атмосферы. Таким образом, коллоидные глобулы и макроионы полиэлектролита различаются но механизму образования зарядов (избирательная адсорбция и диссоциация ионогенных групп) и, возможно, по характеру их расиределе-ния. [c.100]

    Другой тормозящий эффект также связан с существованием ионной атмосферы и ее влиянием на движение ионов. Установлено, что образование и разрушение ионной атмосферы протекает с большой, но с конечной скоростью. Характеристикой этой скорости служит так называемое время релаксации Тр, которое можно рассматривать как величину, обратную скорости создания или разрушения ионной атмосферы. Время рела1 сации зависит от ионной силы раствора, его вязкости и диэлектрической ироиицаемости и выражается уравнением [c.122]

    Прн достаточно высоком значении ij может оказаться, что путь, нропдсчтын нонами за время разрушения старой н образования новой ионной атмосферы, т. е. за удвоенное время релаксации Гг, будет нлн бо.чьше [ адпуса ионной атмосферы  [c.126]

    Из приближенного уравнения (XV.7.6) видно, что вблизи иона на расстоянии г < 1/к потенциал складывается из двух частей кулоновского потенциала центрального иона zizlDr и — постоянного кулоновского потенциала, образованного зарядами — Zje, сферически симметрично распределенными на поверхности сферы радиусом 1/х вокруг иона z,e. Такое распределение зарядов получило название ионной атмосферы (ионное облако), а 1/х — среднего радиуса ионной атмосферы. [c.448]

    Однако для более высоких концентраций такая простая модель раствора ун е не представляет ценности, бопее того, приближение > 1г г/ЬкТ < 1 не может использоваться вблизи иона г [см. уравнение (ХУ.7.2)]. По Бьер-руму [50], любую пару ионов, взаимодействие между которыми составляет величину порядка 2кТ и более, следует рассматривать как ионную пару, а пе как независимые ионы, а теория Дебая — Хюккеля справедлива лишь для свободных ионов, находящихся друг от друга на расстоянии, достаточном для того, чтобы взаимодействие между ними было меньше 2кТ. Если обозначить это расстояние гв и пренебречь ионной атмосферой вокруг такой ионной пары , то для пары, образованной двумя ионами с. зарядами 2, и получим [c.452]

    Не следует думать, что при беспорядочном движении иона его ионная атмосфера движется вместе с ним как одно целое. Прн движении ион покидает свою ионную атмосферу и непрерывно на пути своего движения создает новую. Этот процесс разрушения старой и образования новой ионной атмосферы протекает хотя и быстро, но не мгновенно, вследствие чего при движении иона /надушается симметричность ионной атмосферы. 1тричем Т1лотность е больше позади движущегося иона Оче- видно, появление асимметрии ионной атмосферы также вызывает некоторое торможение поступательного движения иона, которое получило название эффекта, асимметрии или релакса-Таким образом, из-за наличия ионной атмосферы прид вй-жении иона возникают два тор.мозящих эффекта электрофоретический, обусловленный движением ионной атмосферы в сторону, противоположную направлению движения иона, и эффект ре-., у лаксации, обусловленный асимметрией ионной атмосферы. V Убедительным подтверждением правильности представлений Дебая и Гюккеля является так называемый эффект Вина, обнаруженный в 1927 г. Если уменьшение подвижности ионов с увеличением концентрации объясняется наличием ионной атмосферы, то уничтожение нию подвижности предельного  [c.434]

    Представления об образовании ионных атмосфер в растворах электролитов, нашедшие отражение в теории Дебая — Хюккеля, объяснили многие свойства электролитных растворов. Однако ряд экспериментальных фактов не объяснялся этой теорией. Непонятной была, например, аномальная электрическая проводимость, впервые обнаруженная Каблуковым (1890) при исследовании растворов НС1 в амиловом спирте. Обычно удельная электропроводность концентрированных растворов уменьшается с добавлением электролита. Каблуков нашел, что начиная с некоторой высокой концентрации электрическая проводимость раствора НС1 в амиловом спирте с дальнейшим ростом концентрации не уменьшалась, а возрастала. Впоследствии такого рода концентрационная зависимость электрической проводимости была обнаружена во многих других системах, включая водные растворы (например, растворы AgNOa). [c.445]

    В гипотетическом идеальном растворе электролита ионная атмосфера отсутствует, так как предполагается, что ионы электростатически не взаимодействуют между собой. Таким образом, работа /4 равна электрической работе образования ионной атмосферы в не-пдеальном растворе. [c.252]

    Окрашивание бесцветных пленок органическими красителями и неорганическими соединениями по реакции двойного обмена (см. методику, приведенную ниже) не позволяет получить светостойкую окраску, так как красители отлагаются лишь в верхней части пор. В связи с распространением строительных конструкций из сплавов алюминия, эксплуатипуемых и жестких условиях наружной атмосферы, проводят светостойкое окрашивание путем электрохимической обработки переменным током частотой 50 Гц. В катодный период происходит разряд присутствующих в растворе ионов с образованием мелкодисперсных частиц металлов и нерастворимых оксидов — в основном на дне пор. Окрашенные таким образом пленки наполняют растворами солей металлов (например, никеля), которые взаимодействуют с веществом пленки и образуют гидроксиды. Окрашивание непосредственно в процессе анодного оксидирования, происходящее, например, в электролитах № 3 и № 4 (см. табл. 13.1), связывают с включением в растущий оксид [c.83]

    Различают электрофоретическое и релаксационное торможения. Электрофоретический эффект возникает потому, что при наложенин электрического поля центральный гидратированный ион и ионная атмосфера сдвигаются в противоположных направлениях, что вызывает дополнительную электрофоретическую силу трения, уменьшающую абсолютную скорость передвижения иона. Релаксационный эффект или эффект симметрии вызывается тем, что при движении иона ионная атмосфера разрушается, а вновь образованная несимметрична ее плотность впереди движущегося иона меньше, чем позади. Релаксационный эффект исчезает при такой частоте переменного поля, когда взаимные смещения иона и ионной атмосферы малы и ионная атмосфера практически симметрична. Исчезновение релаксационного эффекта называют дисперсией электропроводности. [c.94]


Смотреть страницы где упоминается термин Ионная атмосфера образования: [c.313]    [c.141]    [c.146]    [c.332]    [c.50]    [c.308]    [c.214]   
Физическая химия растворов электролитов (1950) -- [ c.77 ]

Физическая химия растворов электролитов (1952) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера, ионы

Время образования ионной атмосферы

Иониты Ионная атмосфера

Ионная атмосфера

Ионная атмосфера работа образования

Ионная атмосфера скорость образования

Ионная атмосфера энергия образования

Ионные атмосферы теория образования

Ионные образование

Ионов образование

Ионы образование

Работа образования ионной атмосферы. Электростатическая энергия электролита

Эффекты, связанные с образованием ионной атмосферы



© 2024 chem21.info Реклама на сайте