Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аэрозоли дисперсность и свойства

    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]


    Особенности аэрозолей заключаются в том, что из-за низкой вязкости воздуха седиментация и диффузия частиц аэрозоля протекают очень быстро. Кроме того, дымы и туманы легко переносятся ветром, что используют для создания дымовых завес, окуривания и опрыскивания сельскохозяйственных культур. Электрические свойства аэрозолей чрезвычайно сильно отличаются от электрических свойств систем с жидкой средой, что объясняется резким различием плотностей и диэлектрических свойств газов и жидкостей. В газовой среде отсутствуют электролитическая диссоциация и ДЭС. Однако частицы в аэрозолях имеют электрические заряды, которые возникают при случайных столкновениях частиц друг с другом или с какой-нибудь поверхностью. Возможна также адсорбция ионов, образующихся при ионизации газов под действием космических, ультрафиолетовых и радиоактивных излучений. Для аэрозолей характерна крайняя агрегативная неустойчивость. Их длительное существование связано с высокой дисперсностью и малой концентрацией. Это значит, что устойчивость аэрозолей является лишь кинетической, термодинамические факторы устойчивости отсутствуют. [c.447]

    По оптическим свойствам аэрозоли очень близки к растворам лиофобных коллоидов. В частности, для них также характерно светорассеяние. Однако вследствие большой разницы в показателях преломления газовой дисперсионной среды и жидкой или твердой дисперсной фазы светорассеяние у аэрозолей более интенсивно, и они не пропускают свет. На этом свойстве аэрозолей основано применение маскировочных дымовых завес. Благодаря сильному светорассеянию аэрозоли, находящиеся в верхних слоях атмосферы, уменьшают интенсивность солнечной радиации и влияют на климатические условия. [c.349]

    В атой главе рассмотрены электрические свойства высокодисперсных коллоидных систем с твердой дисперсной фазой и жидкой дисперсионной средой. Об электрических свойствах аэрозолей, эмульсий, а также растворов коллоидных поверхностно-активных веществ сказано в главах, посвященных этим системам. [c.169]

    По ряду свойств аэрозоли подобны коллоидным растворам для них характерны термодинамическая неустойчивость, броуновское движение, диффузия, седиментация, эффект Тиндаля, избирательное светорассеяние, электрофорез и др. Но газовая дисперсионная среда вносит некоторые особенности светорассеяние в аэрозолях значительно сильнее, чем в коллоидных растворах броуновское движение и диффузия — более интенсивны электрический заряд дисперсных частиц аэрозолей ничтожно мал, а воздух [c.290]


    Специфические свойства аэрозолей — термофорез и термопреципитация, т. е. удаление дисперсных частиц аэрозолей от нагретой поверхности и оседание частиц дисперсной фазы аэрозолей на холодной поверхности. Дерягин эти свойства объясняет тем, что молекулы газа движутся от более горячей поверхности с большой скоростью и толкают дисперсные частицы аэрозолей к более холодным участкам пространства. [c.291]

    К аэрозолям по свойствам близко примыкают порошки, которые можно рассматривать как аэрозоли с твердой дисперсной фазой, скоагулировавшие и образовавшие осадок (аэрогель). К порошкам следует отнести также и грубодисперсные системы, которые вследствие большого размера частиц седиментацион но неустойчивы. [c.350]

Рис. XI, 1. Зависимость основных свойств аэрозолей от их дисперсности (по Н. А. Фуксу). Рис. XI, 1. <a href="/info/1423767">Зависимость основных</a> <a href="/info/770018">свойств аэрозолей</a> от их дисперсности (по Н. А. Фуксу).
    Аэрозоли воздушных выбросов предприятий характеризуются значительным разнообразием дисперсного состава и физико-химических свойств. Для очистки промышленных выбросов, согласно стандарту, создан довольно большой класс пылеуловителей (табл. 5.5), который в большинстве случаев позволяет произвести оптимальный выбор средств очистки. [c.277]

    Важным отличием аэрозолей от жидких дисперсных систем является отсутствие электронейтральности в системе в целом. Суспензии, эмульсии, лиозоли в макроколичествах не имеют заряда, в них соблюдается закон электронейтральности. Аэрозоль даже в больших количествах может обладать значительным статическим зарядом, а седиментация приводит к его неравномерному распределению в системе, что создает серьезные трудности при рассмотрении Закономерностей изменения свойств аэрозолей. Однако оценочные расчеты, Иапример, напряженности электрического поля в облаках, можно провести с помощью простых соотнощений. [c.228]

    Свободно-дисперсные системы проявляют свойства жидкостей обладают текучестью, не оказывают сопротивления сдвиговому усилию. К такому типу систем относятся аэрозоли, лиозоли-змульсии и разбавленные суспензии. [c.17]

    Следовательно, чем меньше размер капель аэрозоля, тем более благоприятны условия для их полного испарения. Степень дисперсности зависит от конструкции распылительной системы и от физических свойств раствора плотности, вязкости, поверхностного натяжения. Положительно влияют поверхностно-активные вещества, которые вводят в раствор (спирты, кетоны, органические кислоты). [c.12]

    Рассматривая свойства аэрозолей, прежде всего необходимо отметить, что они обладают значительно меньшей агрегативной устойчивостью, чем коллоидные и дисперсные системы с жидкой дисперсионной средой. Как мы видели выше, агрегативная устойчивость дисперсных систем с жидкой дисперсионной средой обусловлена существованием либо двойного электрического слоя, либо сольватной оболочки, либо, наконец, прочной пленки на поверхности частиц. В системах с газообразной дисперсионной средой всякое взаимодействие между поверхностью частиц и средой отсутствует. Правда, ионы, обычно присутствующие в небольшом количестве в газообразной среде, способны адсорбироваться на поверхности частиц и придавать им электрический заряд, однако возникающий заряд невелик и фактором устойчивости служить не может. Поэтому аэрозоли агрегативно неустойчивы, и в них всегда идет самопроизвольная коагуляция, скорость которой зависит от начальной концентрации аэрозоля и подчиняется уравнению Смолуховского для кинетики быстрой коагуляции (см. гл. VI). [c.149]

    Другое специфическое свойство аэрозолей — фотофорез, т. е. движение дисперсных частиц аэрозолей в направлении к источнику света или от источника света. Особенно интенсивен фотофорез окрашенных дисперсных частиц аэрозолей. В отличие от термо-фореза и термопреципитации, фотофорез пока не имеет обоснованного теоретического объяснения. [c.291]

    При изучении молекулярно-кинетических свойств аэрозолей последние целесообразно разделить на два класса аэрозоли с отношением длины пробега молекул к размерам частиц Я/г>1 и аэрозоли с К/г< 1. Оседание сферических частиц дисперсной фазы аэрозолей при A/r< l удовлетворяет уравнению Стокса [c.188]

    Излагая материал, касающийся аэрозолей, мы не принимали во внимание различия между аэрозолями с жидкой и твердой дисперсной фазой, так как по свойствам они сравнительно мало отличаются друг от друга. При ознакомлении с лиозолями рассмотрим отдельно в соответствии с принятой во введении классификацией системы с газовой, жидкой и твердой дисперсной фазой, поскольку их свойства весьма различны. [c.366]

    По кинетическим свойствам дисперсной фазы все дисперсные системы можно подразделить на два класса свободно-дисперсные, в которых частицы дисперсной фазы не связаны между собой и могут свободно перемещаться (лиозоли, аэрозоли, суспензии, эмульсии), и связно-дисперсные, в которых одна из фаз структурно закреплена и не может перемещаться свободно. К этому классу относят гели и студни, пены, капиллярно-пористые тела (диафрагмы), твердые растворы и др. [c.369]


    Микрогетерогенные и ультрамикрогетерогенные дисперсные системы благодаря соизмеримости частиц дисперсной фазы с длиной световых волн обладают специфическими оптическими свойствами. Это позволяет использовать оптические методы исследования для изучения структуры и формы частичеи , скорости их перемещения, размеров и концентрации. Оптические методы широко используются в практике определения концентрации коллоидных растворов, эмульсий, аэрозолей. Оптические характеристики аэрозолей (туманы, тучи, пыль), степень мутности водоемов имеют большое значение для авиации, метеорологии, контроля загрязнения окружающей среды. [c.388]

    Для дымов и туманов характерны те же оптические свойства, что для всех коллоидных и дисперсных систем светорассеяние и светопоглощение. Яркость рассеянного света в аэрозолях зависит от размеров частиц и подчиняется формуле Рэлея (см. гл. И). Способность аэрозолей к светорассеянию широко используется в военной технике для светомаскировки. Белые [c.151]

    При изучении неорганической химии вы приобрели первые представления о растворах и процессе растворения веществ в воде. Там же упоминалось, что при смешивании веществ с водой образуются и однородные системы (характерное свойство растворов), и неоднородные, т. е. суспензии и эмульсии. Задумались ли вы, почему одни вещества с водой образуют однородную систему, а другие — неоднородную Чтобы ответить на этот вопрос, следует выяснить, что происходит в процессе растворения веществ в воде. При растворении вещества измельчаются — дробятся. Поэтому истинные растворы, а также суспензии и эмульсии относят к дисперсным системам диспергирование означает раздробление). Дисперсных систем известно много. Они различаются между собой в зависимости от того, какие частицы (твердые, жидкие, газообразные) и в какой среде (жидкой, газообразной) распределены. Так, например, одной из таких дисперсных систем являются дым или пыль в воздухе воздух— смесь газов, а частицы — мелкораздробленные твердые вещества. Туман — это дисперсная система, где среда — воздух, диспергированные частицы — мелкие капли жидкости. Обе дисперсные системы относятся к типу аэрозолей. [c.80]

    Таким образом, исследование процессов возникновения, движения и разрушения аэрозолей с учетом электрических свойств дисперсной фазы имеет исключительно важное значение для многих практических приложений. [c.302]

    Оптические свойства. Оптические свойства аэрозолей подчиняются в общем тем же законам, что и оптические свойства лиозолей. Следует, однако, помнить, что вследствие большой разницы в плотностях, а значит, и в показателях преломления дисперсной и газовой фаз оптические свойства аэрозолей и прежде всего светорассеяние проявляются весьма ярко. Благодаря большой способности рассеивать свет аэрозоли широко применяются для создания дымовых завес. Из всех дымов наибольшей способностью рассеивать и отражать свет обладает дым Р2О5 его маскирующая способность обычно принимается за единицу. [c.342]

    На основе этих общих позиций рассмотрены свойства важнейших классов дисперсных систем (эмульсии, пены, аэрозоли, ВМС и их растворы, коллоидные электролиты). [c.341]

    Основные коллоидно-химические закономерности рассмотрены на примерах дисперсных систем, включающих твердую фазу, — суспензий, золей и связнодисперсных капиллярных систем. В эмульсиях, пенах и жидких аэрозолях обе фазы являются подвижными, что придает, при сохранении общих, закономерностей, некоторые особенности их свойствам. [c.306]

    Газовая дисперсионная среда вносит ряд своеобразных черт в свойства аэрозолей. Прежде всего — это их принципиальная лио-фобность и отсутствие эффективных путей стабилизации. Время разрушения аэрозольной системы определяется только скоростью седиментации или коагуляции. Иначе говоря, устойчивость аэрозолей, во всяком случае аэрозолей с заметной концентрацией дисперсной фазы, носит кинетический характер. [c.271]

    У аэрозолей вследствие более резкого различия в плотностях дисперсной и дисперсионной фаз по сравнению с другими дисперсными системами более резко вцражаются некоторые свойства, характеризующие дисперсные системы, например оптические. Благодаря ярко выраженному светорассеянию, наблюдаемому в аэрозолях, их применяют для создания дымовых завес. [c.247]

    В зависимости от агрегатного состояешя различают аэрозоли с твердой дисперсной фазой (пьшь различных радиоактивных веществ, дым) и аэрозоли с жидкой дисперсной фазой (пар, туман или аэрозоли конденсации). Свойства аэрозолей зависят от размера их дисперсной фазы. По дисперсности аэрозоли делятся на три группы  [c.116]

    Показатели опасности делятся на две группы. К первой группе относятся показатели потенциальной опасности летучесть вещества или КВИО, равный отношению летучести к токсичности при ингаляции в стандартных условиях (20 °С, экспозиция 2 ч, мыши) растворимость в воде и жирах и другие (например, дисперсность аэрозоля). Эти свойства определяют возможность проникновения яда в организм при вдыхании, попадании на кожу и т. п. [c.10]

    Порошки можно рассматривать как осажденные аэрозоли. Однако частицы в них могут быть более крупными и достигать в диаметре до 1—2 мм. В зависимости от размеров частиц для nopoiJiKOB приняты разные названия. Например, в почвоведении используют названия песок (диаметр частиц 0,2—0,002 см), пыль (20—2 мкм). Более мелкие порошки иногда называют пудрой. Размер частиц промышленных порошков определяется их целевым назначением и часто является одним из основных показателей качества продукта. Например, дисперсность и распределение частиц по размерам в цементных порошках сильно влияет на механическую прочность изделия. Качество муки повышается с увеличением тонины помола. Многие важнейшие свойства композицион ных материалов зависят от дисперсности наполнителей. [c.185]

    Из свободнодисперсных систем наиболее широко распространены микрогетерогенные системы, такие как суспензии, пороижи, эмульсии, аэрозоли. Характерным общим свойством этих систем, особенно если они разбавлены, является склонность к оседанию или всплыванию частиц дисперсной фазы. Оседание частиц дисперсной фазы называется седиментацией, а всплывание частиц — [c.187]

    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    Дисперсные системы можно разделить также на свободнодисперсные (золи) и связаннодисперсные (гели). К свободнодисперсным системам относятся бесструктурные системы, в которых частички дисперсной фазы не связаны в одну сплошную сетку и способны независимо друг от друга перемещаться в дисперсионной среде под влиянием теплового движения или силы тяжести. Такие системы не оказывают сопротивления сдвиговому усилию, обладают текучестью и всеми остальными свойствами, характерными для обычных жидкостей. К ним относятся лиозоли, достаточно разбавленные суспензии и эмульсии, а также аэрозоли. [c.18]

    Влияния при получении аэрозоля. При пневматическом распылении раствора анализируемой пробы капельки образующегося аэрозоля, испаряясь в пламени, образуют твердые частицы, которые часто не успевают превратиться в атомный пар из-за высокой температуры их испареиня и ограниченного времени пребывания в пламени. Чем меньше разме)) твердых частиц, тем степень атомизации выше. Естественно, что средний размер твердых частиц определяе-тся расходом раствора при пневматическом распылении и дисперсностью капелек получаемого аэрозоля. Поэтому физические свойства анализируемых и стандартных растворов должны быть близки. [c.159]

    Существенен и состав частиц угля, в частности содержание в угле, давшем угольный аэрозоль, летучих веществ. Может изменяться в зависимости от состава угля и степень дисперсности аэрозоля (слипание пылинок). Свойства частиц угольной пыли могут отличаться от свойств недиспергированного угля. Например, установлено (Б. Ф. Кирин), что значение диэлектрической проницаемости для диспергированного угля (пыль) от 4 до 10 раз меньше, чем для монолитного угольного массива. В зависимости от дисперсности пыли меняется ее удельная магнитная восприимчивость. Эта характеристика меняется также в зависимости от соотношения между органической и минеральной частями угольного вещества. [c.275]

    Молекулярно-кинетические свойства дымов и тyмa oв, как и всех дисперсных систем, являются функцией размеров их частиц некоторая специфика этих свойств связана исключительно с особенностями газообразной среды. Частицы аэрозолей находятся в интенсивном броуновском движении скорость их диффузии значительно больше, чем частиц такого же размера в жидкой среде, так как вязкость газа гораздо меньше вязкости любой жидкости, а удельная скорость диффузии О обратно пропорциональна вязкости среды [c.151]

    Второе издание (1-е изд. 1974 г.) курса коллоидной химии переработано п соотнетствии с новейшими достижениями науки о коллоидах. Изложены общие закономерности физикохимии дисперсных систем и поверхностных явлений, учение о поверхностных силах и адсорбции, устойчипости дисперсных систем, физическая химия высокомолекулярных соединений, мицеллообразование, свойства порошков, суспензий, эмульсий, поверхностных пленок и аэрозолей. [c.2]

    Продолжается активное развитие ряда фугих направлений коллоидно-химической науки и смежных областей знания учения об аэрозолях (играющего важную роль в создании методов защиты окружающей среды от загрязнения) физикохимии электроповерхностных явлений, включая коллоидно-химические аспекты борьбы с коррозией термодинамики поверхностных явлений и фазовых равновесий в дисперсных системах, теории электрокинетргаеских и оптических свойсгв коллоидных дисперсий изучения коллоидных свойств дисперсий ВМС (включая методы получения полимерных покрытий, особенности латексной полимеризации) исследований специфических коллоидно-поверхностных эффектов в кристаллах особенностей смачивания и других поверхностных явлений в высокотемпературных системах. Энергично развивается физико-химическая механика природных дисперсных систем (глинистые минералы, уголь, торф и др.) конструкционных и строительных материалов (стали, сплавы, керамика, материалы на основе минеральных вяжущих веществ) контакта твердых поверхностей, трения, смазывающего действия. [c.14]

    В третьем издании (2-е изд.— 1984 г.) изложены общие закономерности фнзикохнмни дисперсных систем и поверхностных явлений, учение о поверхностных силах и адсорбции, устойчивости дисперсных систем, физическая химия высокомолекулярных соединений, мицеллообразование, свойства порошков, суспензий, эмульсий, поверхностных пленок и аэрозолей. [c.2]

    Аналогично и для других флуктуирующих величин средний квадрат флуктуации равен отношению кТ ко второй производной приращения свободной энергии системы (работы флуктуации) по флуктуирующему параметру. В дальнейшем подобный подход будет использован при описании оптических свойств дисперсных систем (см. гл. VI),, при рассмотрении электрических свойств аэрозолей (см. 1 гл. X) и условий образования критических эмульсий (см. 2 гл. VIII). [c.147]

    В предыдущих главах были описаны общие закономерности возникновения и основные свойства дисперсных систем, включая причины разрушения и факторы стабилизации термодинамически неустойчивых — лиофобных — дисперсных систем. Данная глава посвящена изложению более конкретных сведений о получении, строении, свойствах и использовании дисперсных систем различной природы. При этом особое внимание уделяется связи характерных свойств дисперсных систем (и возможных путей управления их устойчивостью) с ф а-303ым состоянием дисперсной фазы и дисперсионной среды. Начнем с краткого описания свойств азродисперсных систем (аэрозолей), в которых дисперсионной средой является газ. Аэрозоли занимают особое положение среди других дисперсных систем ввиду принципиальной лиофобности их стабилизация, например введением ПАВ, малоэффективна. Специфичны также электрические свойства аэрозолей. [c.270]

    Многие специфические свойства аэрозолей связаны с особенностями дисперсионной среды — воздуха, его низкой вязкостью и малой электропроводностью. Лиофобность аэрозолей и высокие коэффициенты диффузии в газовой фазе обусловливают большую скорость процессов изотермической перегонки и коагуляции, следствием которых является нарушение агрегативной устойчивости системы. Малая вязкость дисперсионной среды приводит к тому, что частицы быстро оседают, н аэрозольная система разрушается при значительно меньших размерах частиц или их агрегатов, чем лиозоли. В результате концентрация и дисперсность исходно высокодпсперсных аэрозолей достаточно быстро падают. В реальных аэрозолях концентрация дисперсной фазы, как правило, составляет не более 10 —10 частиц/см , что значительно ниже концентрацин лиозолей, достигающей 10 частиц/см . Размер частиц в большинстве аэрозолей оказывается в интервале 10 —10 см более крупные частицы быстро оседают, а мелкие исчезают вследствие коагуляции. [c.272]

    Данная глава посвящена изложению конкретных сведений о получении, строении, свойствах и использовании дисперсных систем различной природы. Особое внимание уделено связи характерных свойств дисперсных систем (и возможных путей управления их устойчивостью) с фазовым состоянием дисперсной фазы и дисперсионной среды. Особое положение среди других дисперсных систем, в которых д1[сперсиониой средой является газ, занимают аэрозоли. Ввиду принципиальной лиофобности аэрозолей их стабилизация, напри1У1ер при введении ПАВ, ВкШЮ-эффективна. Специфичны также электрические свойства аэрозолей. [c.328]


Смотреть страницы где упоминается термин Аэрозоли дисперсность и свойства: [c.28]    [c.350]   
Курс коллоидной химии (1976) -- [ c.349 ]




ПОИСК





Смотрите так же термины и статьи:

Аэрозоли свойства

Аэрозоль



© 2024 chem21.info Реклама на сайте