Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость дисперсий

    Как известно, устойчивость гидрофильных коллоидов обычно выше предсказываемой теорией ДЛФО, учитывающей молекулярное протяжение и электростатическое отталкивание. Однако лишь в последнее время удалось установить прямую связь между устойчивостью гидрофильных коллоидов и толщиной граничных слоев воды, оцененной независимыми методами. Для дисперсий кремнезема и алмаза экспериментально прослеживается влияние на их устойчивость pH дисперсионной среды и температуры. Причиной этого влияния является изменение дальнодействия структурных сил отталкивания, стабилизирующих дисперсию. Стабилизация дисперсий при низких pH связана с увеличением числа поверхностных ОН-групп, способных к образованию водородных связей с молекулами воды, что ведет к росту сил структурного отталкивания. Повышение температуры вызывает ослабление сетки направленных водородных связей в воде, что уменьшает дальнодействие структурных сил и приводит к снижению устойчивости дисперсий. Наблюдающаяся обратимость температурной зависимости устойчивости свидетельствует об обратимости структурной перестройки граничных слоев. [c.168]


    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]

    О РОЛИ ГРАНИЧНЫХ СЛОЕВ ВОДЫ в АГРЕГАТИВНОЙ УСТОЙЧИВОСТИ ДИСПЕРСИЙ ГИДРОФИЛЬНЫХ ЧАСТИЦ [c.169]

    Исследование устойчивости дисперсии ПА в растворах различных электролитов проводили методом поточной ультрамикроскопии. При рН = 2 и рН = 3 в широком интервале концентраций КС1 (от 1-10 2 до 3-10 М) дисперсия ПА является агрегативно устойчивой. При концентрации 5-10 М при рН = 2 в системе наблюдается обратимая агрегация (степень агрегации ш = 1,7). Из расчетов энергии взаимодействия частиц по теории ДЛФО следует, что при концентрациях электролита 1 1, превышающих 1-10 моль/л, на всех расстояниях молекулярные силы преобладают над ионно-электростатическими. Таким образом, наблюдаемое отсутствие агрегации частиц вплоть до концентраций КС1 5-10 моль/л может быть объяснено тем, что реальная потенциальная яма не достигает достаточной глубины, необходимой для образования агрегатов. Это, очевидно, связано с существованием ГС воды у поверхности частиц ПА, что обусловливает возникновение структурной составляющей расклинивающего давления. [c.183]


    Наблюдения за устойчивостью и коагуляцией дисперсии алмаза в щелочной области (pH = 9) проводились непрерывно в течение 6—7 ч и далее через 24 ч. Исходная дисперсия алмаза при pH = 9 без добавления K I и при его концентрации 5-10 моль/л является агрегативно устойчивой. Из расчета энергии взаимодействия по теории ДЛФО следует, что устойчивость дисперсии алмаза при концентрации K l lO М обусловлена наличием высокого энергетического барьера ( 160 кТ) и очень малой глубиной дальнего минимума. При концентрации КС1 I-IO моль/л в системе уже наблюдается заметная агрегация степень агрегации составляет 2,7. При дальнейшем росте концентрации КС1 увеличивается скорость и степень агрегации, достигнутая к определенному времени наблюдения. Это связано с постепенным уменьшением вклада ионно-электростатической составляющей и реализацией более глубокой потенциальной ямы . Обратимый характер агрегации в случае средних концентраций (10 , 10 моль/л), возможно, связан с влиянием структурной составляющей энергии взаимодействия, что приводит к ограниченности глубины ямы . Однако в целом агрегативная устойчивость и коагуляция дисперсии алмаза при pH = 9, в отличие от рассмотренных выше случаев, может быть объяснена теорией ДЛФО в ее классическом варианте. [c.184]

    Из приведенных данных но исследованию устойчивости дисперсии алмаза в растворах K I следует, что в зависимости от pH дисперсионной среды и концентрации электролита и, как следствие этого, от состояния поверхности дисперсия алмаза ведет себя либо как лиофилизованная (кислая область), либо как иопно-стабилизированная (щелочная область) дисперсная система, обнаруживая тем самым различную чувствительность к добавлению индифферентного электролита. В зависимости от состояния поверхности частиц алмаза (соотношения числа диссоциированных и недиссоциированных поверхностных групп), возможности образования водородных связей между молекулами воды и поверхностными группами алмаза, а также от концентрации добавленного электролита меняется структура воды в ГС, и, как следствие, соотношение между молекулярной, ион-но-электростатической и структурной составляющими энергии взаимодействия частиц. [c.184]

    Обращает на себя внимание антибатный характер зависимости -потенциала и устойчивости системы от pH с ростом pH по мере возрастания электрокинетического потенциала устойчивость системы уменьшается. Аналогичные результаты получены в работах [502, 503] при изучении электрофоретического поведения и устойчивости дисперсии 5102. [c.185]

    Сказанное выше относится и к объяснению данных, полученных при коагуляции дисперсии алмаза в растворе ВаСЬ, когда с ростом pH происходит значительное изменение устойчивости системы, несмотря на то, что электростатическая составляющая энергии парного взаимодействия должна изменяться незначительно. По всей вероятности, такой разный характер зависимости устойчивости и электрокинетического потенциала от pH связан не только с присутствием ГС, но и с тем, что их структура и протяженность меняются с изменением pH и концентрации электролита. Последнее предположение подтверждается, в частности, при изучении агрегативной устойчивости дисперсии алмаза при рН = 9. При концентрациях ВаСЬ 5-10 и 1-10 2 моль/л степень агрегации т=1,8. Вклад ионно-электростатической составляющей при этих концентрациях крайне мал, частицы агрегируют в первичной яме ограниченной глубины. Наблюдаемый рост степени агрегации до /и = 2,3 при повышении концентрации ВаСЬ до 5-10 моль/л свидетельствует о росте глубины этой ямы, что может быть объяснено уменьшением вклада структурной составляющей вследствие перестройки ГС с ростом концентрации электролита. [c.185]

    Все приведенные выше данные о температурной зависимости устойчивости дисперсии ПА свидетельствуют о том, что повышение температуры при постоянной концентрации электролита приводит к частичному разрущению и утончению ГС. При этом появляется возможность сближения частиц, реализации более глубокого энергетического минимума и, следовательно, роста степени агрегации. Тип и концентрация электролита, как обсуждалось выше, в известной мере определяют структуру и протяженность ГС и, следовательно, оказывают влияние на характер изменения степени агрегации частиц ПА с ростом температуры. [c.187]

    Таким образом, свойства адсорбционно-сольватной оболочки, влияющие на устойчивость дисперсий с неполярной средой, помимо сорбционной способности материала частицы и ее заряда, зависят от химической природы неполярного растворителя и, главным образом, от присутствия в нем ионов и полярных молекул. Последние способны образовывать [c.28]

    Однако общий сток можно рассматривать как локальный сток производства полистирола, к которому добавлен электролит. Электрообработка, вызывающая нарушение агрегативной устойчивости дисперсии (смешанный сток), возможна при напряженности электрического поля порядка единиц В/см и времени обработки 5 мин. [c.104]

    Таким образом, на основе наиболее общих представлений об устойчивости можно выделить механические методы и методы, основывающиеся на неполной агрегативной или седиментационной устойчивости дисперсий. Последние при низком уровне устойчивости применяются без введения реагентов, при высокой устойчивости — с введением реагентов. [c.332]


    Для получения устойчивых дисперсий в такого рода растворителях требуется предварительное приготовление пасты из углерода и масла, причем смешивание этих веществ следует продолжать до полного смачивания частиц углерода маслом. После этого готовую пасту разбавляют растворителем до желательной концентрации. [c.32]

    Являясь поверхностно-активными веществами, компоненты кубовых остатков бутиловых спиртов характеризуются высоким проникающим действием в АСПО, ослабляют структурно-механические связи в отложениях парафина и, как следствие, в сочетании с углеводородным растворителем, каким является гексановая фракция, способствуют более интенсивному их растворению. Кроме того, кубовые остатки являются хорошим диспергатором, образуют устойчивую дисперсию парафина в нефти и препятствуют вторичному осаждению его из раствора при изменении термодинамических условий. [c.66]

    При по.мощи Армака Т некоторые не растворимые в воде продукты можно диспергировать в воде с образованием жидкой устойчивой дисперсии. Эмульсии, приготовленные с добавлением Армаков , имеют необычные свойства высаживаться на большинстве поверхностей. Это свойство позволяет извлекать дисперсную фазу из э.мульсии и получать более плотные покрытия, чем получаемые при помощи других эмульсий. Пленки, получае.мые из эмульсий на основе Ар.маков , непосредственно после высыхания [c.176]

    Изучены условия, приготовления устойчивых дисперсий сажи типа ХАФ. В качестве диспергирующей среды исследовали бензол, толуол, м-ксилол, этилбензол, изопропилбензол, циклогексан и бентол . [c.209]

    Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в [c.310]

    Выяснение зависимостей, относящихся к решению второй задачи, приводит к более полному пониманию процессов разрушения и повышения прочности твердых тел и устойчивости дисперсий, а также к нахождению новых путей механической обработки твердых тел. [c.208]

    Латекс — водная дисперсия каучука. Кроме каучука (27— 35%), латекс содержит 6—11% некаучуковых частей белковых веществ, смолистых веществ, сахаров, жиров и минеральных солей. Белковые вещества создают защитный слой вокруг мельчайших частиц латекса (глобул), препятствуя слиянию частиц каучука и самопроизвольной коагуляции. Устойчивости дисперсии способствует также наличие таких поверхностно-активных веществ, как жиры. [c.288]

    Результаты исследования электроноверхностных свойств и устойчивости дисперсии аморфного кремнезема [514] и расчеты энергии взаимодействия частиц по теории ДЛФО показали, что эта дисперсия более устойчива по сравнению с дисперсией кварца той же дисперсности. Наблюдаемые различия в устойчивости обеих систем при одном и том же составе дисперсионной среды (в том числе и при pH, соответствующих изоэлектрическому состоянию) объяснены разным вкладом структурной составляющей, т. е. структурными отличиями ГС у поверхности исследуемых частиц. [c.182]

    С позиции коллоидной химии методы разделения суспензий целесообразно разделить на два класса методы, в которых степень агрегативной устойчивости дисперсий проявляется незначительно, и методы, в которых агрегативная устойчивость имеет первостепенное значение. [c.332]

    При такой классификации методы применения фильтровальной перегородки объединяются с методами, использующими седиментационную неустойчивость дисперсий. Следуя традиции, будем именовать эту группу методов механическими. Если агрегативная и седиментационная устойчивости системы не высоки, можно применять не только механические методы, но и методы, эффективно использующие низкий уровень устойчивости дисперсии, причем без введения дополнительных реагентов. Важнейшие из таких методов— микрофлотация и некоторые разновидности фильтрования (скорые фильтры, контактные осветлители). Эти же методы становятся эффективными и в отношении систем, характеризующихся высокой устойчивостью, если их применять при дополнительной обработке дисперсии коагулянтами. Здесь, однако наиболее специфично применение коагулянтов, так как последующее отделение агрегатов от дисперсионной среды может осуществиться различными методами механическими, флотацией и фильтрованием. [c.332]

    Эта основная трудность фильтрования устойчивых дисперсий преодолевается при включении электрического поля, под влиянием которого каждая частица приобретает индуцированный дипольный момент, так что возникают силы диполь-диполь-ного притяжения между частицами (см. раздел Х1П.8). В возникающем многослойном осадке силы сцепления между частицами слоев обеспечены этим диполь-дипольным взаимодействием. [c.381]

    В отличие от коагуляции, стимулируемой введением флокулянтов, при электрокоагуляции исключительно важную роль играет размер частиц (см. раздел ХП1.8). Даже в слабых полях глубина дальнего.минимума на потенциальной кривой для достаточно крупных частиц может составить несколько кТ (так как, например, для сферических частиц дипольный момент возрастает пропорционально третьей степени радиуса). Если, кроме того, учесть, что электрокоагуляция не сопряжена с преодолением барьера, можно заключить, что она практически всегда реализуема для достаточно крупных частиц. Поэтому воздействие электрическим полем может быть более эффективным, чем введение флокулянтов, в особенности для дисперсий, защищенных адсорбционными слоями ПАВ или полимеров. Если адсорбция полиэлектролита на поверхности частиц резко повышает устойчивость дисперсий в отношении электролитной коагуляции, то в отношении электрокоагуляции можно ожидать прямо противоположного эффекта, так как при этом возрастают Кз, дипольные моменты и, следователЬно, энергия поляризационного взаимодействия частиц. [c.381]

    Термодинамически устойчивые дисперсии мицелл могут в определенных условиях возникать путем самопроизвольного диспергирования макрофазы ПАВ (кристаллической или жидкой). И хотя состояние вещества в мицелле не всегда полностью эквивалентно макрофазе, достаточно высокая степень ассоциации молекул в мицеллах позволяет рассматривать их как частицы иной, по сравнению с молекулярным раствором, фазы. Мицеллярные дисперсии ПАВ обнаруживают свойства, присущие коллоидно-дисперсным системам светорассеяние, повышенную вязкость и др. [c.224]

    Отметим, что именно эта величина и была ранее (см. 1 данной главы) использована в качестве критериального параметра, определяющего условия равновесия пептизация коагуляция и тер- модинамической устойчивости дисперс- [c.252]

    Природа устойчивости дисперс ных систем и условия протекания различных процессов их разрушения существенно зависят от концентрации дисперсной фазы, характера взаимодействия частиц друг с другом и т. д. [c.288]

    М о л е к у л я р и о - а д с о р б ц и о н н а я стабилизация дисперсных систем шрает большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярной и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического [c.335]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Экспериментальные данные по изучению устойчивости дисперсии ПА в растворах различных электролитов не дают однозначного ответа на вопрос о влиянии различных ионов на структурную составляющую. Можно предположить, что механизм образования ГС в присутствии различных ионов достаточно сложен. На сложный характер влияния ионо иотропного ряда на состояние воды в ГС указано, в частности, в работе [479], где приводятся данные о структурной составляющей расклинивающего давления П , действующего между гидрофильными кварцевыми пластинками в широком интервале концентраций галогенидов лития, натрия и калия (10 —1 моль/л), свидетельствующие о значительном различии величины максимумов Пг и их положения для ионов лиотропного ряда. [c.186]

    Для подтверждения развиваемых представлений о значительной роли ГС воды в агрегативной устойчивости дисперсий гидрофильных частиц было исследовано влияние температуры на коагуляцию дисперсии алмаза. На основании литературных данных [30, 87, 477, 517] можно было ожидать, что с ростом температуры должен уменьшаться вклад положительной структурной составляющей в общую энергию взаимодействия частиц. Это, в свою очередь, должно снижать агрегативную устойчивость гидрофильных или гидрофилизированных дисперсий. Подтверждающее это положение экспериментальные данные, полученные для дисперсии алмаза в 5-10 М в растворе Ь1С1 при рН = 2 в интервале температур 20—50 °С приведены на рис. 10.9. Незначительная степень агрегации, наблюдаемая при 20°С (т=1,5), заметно увеличивается при возрастании температуры до 40 °С (т=1,8). Дальнейший рост температуры (50 °С) приводит к изменению самого характера процесса агрегации значительно увеличивается скорость коагуляции, образуются более крупные агрегаты, отсутствует выход на плато, наблюдавшийся при более низких температурах. При меньших концентрациях электролита (1-10 М Ь1С1) влияние повышения температуры становится менее заметным при 50°С в дисперсии алмаза наблюдается лишь незначительная степень агрегации. [c.187]

    Результаты исследования устойчивости дисперсии алмаза в растворах ЫС1 (10 —5-10 моль/л) при pH, равных 2, 3 и 6, и температуре опыта 20, 40 и 50 °С [25] показали, что с ростом температуры и повышением концентрации электролита устойчивость системы также уменьшается. Аналогично проявляется влияние температуры на устойчивость дисперсии ПА в растворах А1С1з. [c.187]

    Порог коагуляции данного положительного золя определяли 0,01 % растворами ЫаС1 и М 504 в отсутствие и при введении ПВС, содержащего 11 % ацетатных групп. Устойчивость дисперсий в присутствии ПВС, который наряду с ионно-электростатическим и сольватным факторами устойчивости стабилизирует систему, в 4 раза выше. Известно, что растворы высокомолекулярных соединений и стабилизированные коллоидные растворы мало чувствительны к добавлению электролитов, поэтому наиболее приемлемым методом очистки стоков должен быть метод гетерокоагуляции. [c.98]

    Ассоциаты различного строения являются структурными элементами алкансодержащих дисперсий, топливных и масляных фракций, нефтяных остатков. Активно исследуемым коллоидным объектом нефтяного происхождения являются алкансодержащие дисперсии. Высокомолекулярные нормальные алканы в обычных условиях, начиная с гексадекана и выше, представляют собой твердые вещества. По мере понижения температуры из нефти выделяются кристаллы алкана. Благодаря действию адсорбционных сил часть жидкой фазы ориентируется вокруг надмолекулярных структур и образует сольватные оболочки различной толщины. Сцепление кристаллов приводит к возникновению пространственной гелеобразной структуры, в ячейках которой иммобилизована часть дисперсионной среды, при этом система в целом приобретает структурную прочность. Установлено стабилизирующее действие смолисто-асфальтеновых веществ на устойчивость дисперсий алканов [88]. Влияние термообработки на снижение температуры застывания нефтяных алканов объясняется уменьшением толщины сольватной оболочки их надмолекулярных структур [131]. [c.33]

    Применялись отечественные саЖи газовая печная и ухтинская канальная, а также их смеси в соотношении 1 1. Сажи вводились в латекс в виде 20%-ных дисперсий, стабилизованных калиевым мылом гидрированной. или диспропорционированной канифоли. Дисперсии готовились путем перемешивания их -в течение суток в шаровой мельнице со скоростью вращения 50 об1мин. Агрегативная и кинетическая устойчивость дисперсий определялась по методам, описанным в [3, 51. [c.187]

    Поведение в дисперсиях печной сажи заметно отличается от поведения канальной сажи. При содержании стабилизатора 2,5—3,0 вес. ч. дисперсии представляли собой весьма подвижные системы, устойчивость которых была небольшой. Через сутки концентрация верхнего слоя такой дисперсии составляла 7%, пиЖ яею — 24%. С увеличением количества ста-билргзатора до 3,5 вес. ч. устойчивость дисперсии печной сажн возрастала вдвое. [c.187]

    В литературе нет сведений об условиях получения нёвяз-ких и устойчивых дисперсий высокоактивных печных саж в углеводородах ряда бензола. Данная статья посвящена исследованию этого вопроса. [c.209]

    В практике нефтепереработки наиболее распространенными являются нефтяные дисперсные системы с дисперсной фазой в твердом, жидком и газообразном состоянии и жидкой дисперсной средой. Реальные нефтяные системы ввиду сложности их состава являются полигетерофазными дисперсными системами различных типов, что чрезвычайно усложняет выявление особенностей их поведения. Различными нефтяными дисперсными системами являются парафиносодержащие нефти и нефтепродукты, В различных нефтях содержание парафинов колеблется от долей процента до 20 процентов. По мере понижения температуры из нефти выделяются кристаллы парафина (твердых углеводородов), образующие структуры, размеры и количество которых в объеме изменяются. Благодаря действию адгезионных сил часть жидкой фазы ориен тируется вокруг надмолекулярных структур в виде сольватных слоев определенной толщ гны. При определенной, достаточно низкой температуре, кристаллы парафинов сцепляются, что приводит к возникновению пространственной гелеобразной структуры, в ячейках которой иммобилизована часть дисперсионной среды. Система при этом приобретает структурно-механическую прочность. Установлено [7, 8], что присутствие сложных асфальтеновых веществ способствует стабилизации устойчивости дисперсий парафина. [c.34]

    Существует несколько объяснений механизма эмульсионной полимеризации. Принято считать, что в случае, когда мономеры в воде нерастворимы, процесс полимеризации протекает в мицеллах поверхностно-активных веществ, куда проднффундировал из капель эмульсии мономер. Туда продолжают поступать новые порции мономера по мере его полимеризации и образуются полимерномономерные частицы [3,13]. Обычно их размеры колеблются в пределах от 10 до 100 нм. Концентрация полимера в мономере в этих частицах доходит до 60%. По мере исчерпания капеяь эмульсии концентрация полимера в полимерно-мономерных частицах возрастает. За счет этого увеличивается плотность частиц, теряется устойчивость дисперсии (при отсутствии сильного перемешивания) и частицы полимера оседают на дно. [c.83]

    Напрашивается параллель в механизмах действия скорых фильтров и тонкослойных отстойников. В обоих случаях частицы седиментируют из потока и образуют осадки. Но в тонкослойных отстойниках (см. раздел XVHI. 4) эти осадки текучи, и происходит непрерывная разгрузка, а в скорых фильтрах толщина осадка постепенно растет, что приводит к формированию так называемого фильтроцикла. Приходится думать, что в тонкослойных отстойниках осаждают агрегаты, возникшие за счет предварительного коагулирования, и при фильтровании осадок образуется из относительно устойчивой дисперсии. Известно, что седиментационные об1>емы устойчивых суспензий могут быть на порядок меньше, чем [c.339]

    Напрашивается параллель в механизмах действия скорых фильтров и тонкослойных отстойников. В обоих случаях частицы седиментируют из потока и образуют осадки. Но в тонкослойных отстойниках (см. раздел XVIII.4) эти осадки текучи и происходит непрерывная разгрузка, а в скорых фильтрах толщина осадка постепенно растет, что приводит к формированию так называемого фильтроцикла. Приходится думать, что в тонкослойных отстойниках осаждают агрегаты, возникшие за счет предварительного коагулирования, и при фильтровании осадок образуется из относительно устойчивой дисперсии. Известно, что седиментационные объемы устойчивых суспензий могут быть на порядок меньше, чем в случае агрегированных суспензий. Так как число контактов в единице объема осадка из агрегированной дисперсии много меньше, предельное напряжение сдвига также ниже, что способствует переходу осадка в текучее состояние. [c.374]


Библиография для Устойчивость дисперсий: [c.493]   
Смотреть страницы где упоминается термин Устойчивость дисперсий: [c.169]    [c.117]   
Химия и технология пленкообразующих веществ (1978) -- [ c.148 ]

Химия и технология синтетического каучука Изд 2 (1975) -- [ c.315 , c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимосвязь поверхностных И объемных И. Ф. Ефремов свойств растворов поверхностно-активных веществ 9 Факторы агрегативной устойчивости коллоидных дисперсий

Ефремов Факторы агрегативной устойчивости коллоидных дисперсий

Кинетическая устойчивость пигментных дисперсий

Нефтепродукты агрегативная устойчивость дисперсий

О роли граничных слоев воды в агрегативной устойчивости дисперсий гидрофильных частиц. — Е. В. Голикова, Ю. М. Чернобережский

Присадки влияние на агрегативную устойчивость дисперсий

Суммарные силы взаимодействия частиц. Устойчивое состояние дисперсий

Теория устойчивости дисперсии

Устойчивость полимерных дисперсий



© 2025 chem21.info Реклама на сайте