Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность кварца

    Большое число работ убедительно демонстрирует отличие свойств жидкости, находящейся вблизи поверхности, от свойств в ее объеме [14, 36, 87, 114, 466—475]. Так, обнаружена аномалия диэлектрических свойств [469, 470], эффект ск ачкообразно-го изменения электропроводности [470], изменение вязкости в зависимости от расстояния до твердой- стенки [114, 471, 472], появление предельного напряжения сдвига жидкости при приближении к поверхности твердого тела [14, 473, 474]. Для набухающего в водных растворах 1 а-замещенного монтмориллонита обнаружена оптическая анизотропия тонких прослоек воды [36] найдено изменение теплоемкости смачивающих пленок нитробензола на силикатных поверхностях [475]. Установлено отличие ГС от объемной жидкости по растворяющей способности, температуре замерзания, теплопроводности, энтальпии. В. Дрост-Хансеном опубликованы обзоры большого числа работ, содержащие как прямые, так и косвенные свидетельства структурных изменений в граничных слоях [476—478]. В качестве косвенных доказательств автор приводит, в первую очередь, существование изломов на кривых температурной зависимости ряда свойств поверхностных слоев. Эти температуры отвечают, согласно Дрост-Хансену, разной перестройке структуры ГС. Широко известны также работы Г. Пешеля [479] по исследованию ГС жидкостей (и, прежде всего, воды) у поверхности кварца в присутствии ряда электролитов. [c.170]


    Рассмотрим теперь, от каких физических причин зависит смачивание или несмачивание поверхности. Для этого следует обратиться к анализу изотерм расклинивающего давления смачивающих пленок воды, показанных на рис. 13.3. Кривыми 1—3 здесь изображены зависимости толщины h водных пленок от расклинивающего давления, или, что то же, от капиллярного давления равновесного с пленкой мениска. Кривая 1 относится к пленкам воды на поверхности кварца. Точками показаны экспериментальные данные, сплошная кривая представляет собой рассчитанную теоретически изотерму, учитывающую действие в пленке трех составляющих расклинивающего давления молекулярной Пт, электростатической Пе и структурной Hs [47]. Ветви изотермы, где dU/dh<.0, отвечают устойчивым состояниям пленки. Пленки воды на кварце в области h между 60 и 10 нм (кривая 1) неустойчивы и не реализуются. При постепенном утончении водных пленок вначале возникает метастабильное состояние толстых (/г>100 нм) -пленок. Время их перехода в термодинамически устойчивое состояние тонких -пленок зависит от близости капиллярного давления к критическому Р и от площади -пленок. Чем площадь больше, тем выше вероятность образования в -пленке зародыша а-фазы. Существование толстых -пленок воды обусловлено силами электростатического отталкивания заряженных поверхностей пленки (Пе>0). Так как в этом случае По/го-ЬА>0, -пленки полностью смачиваются водой. Ниже для этого случая будут сопоставлены экспериментальные значения /г с теоретическими, рассчитанными по уравнению (13.9). [c.216]

    Многочисленные эксперименты подтверждают изменение структуры воды в поверхностных пленках. Так, методом ИК-спектрометрии на кварце установлена определяющая роль поверхностных водородных связей, искажающих сетку Н-связей, существующую в объеме воды . Исследование адсорбционных слоев на пакетах кварцевых пластин тем же методом показало сдвиг максимума полосы поглощения, интерпретируемый как усиление интенсивности Н-связей в слоях воды толщиной 2—4 нм. Полученные результаты хорошо согласуются в отношении толщины пленок к с эллипсометрическими измерениями. Значения Н возрастали от 4 до 5,3 нм при р ро 1 с уменьшением краевого угла 0, т. е. с ростом гидрофильности кварца наоборот, при гидрофобизации поверхности кварца (триметил-хлорсиланом) толщина пленки становилась соизмеримой с ошибкой опыта (0,3 нм). Другие эллипсометрические исследования адсорбционных слоев воды на различных твердых поверхностях показали, что толщина их 10 нм и также связана с величиной краевого угла. Многочисленные исследования граничных слоев, моделью которых являются пленки, различными методами (гл. XI. 1) приводят к близким оценкам толщины слоев с измененной структурой, однако для таких слоев, постепенно переходящих в жидкую фазу, при отсутствии физической границы раздела оценка толщины может сильно варьировать в зависимости от метода (см. раздел У.1). Интересно отметить, что с повышением температуры до 70 °С толщина поверхностных пленок резко уменьшается это указывает на существенную роль Н-связей, нарушающихся вследствие усиления теплового движения молекул воды. [c.115]


    Повышение вязкости тонких прослоек воды между гидрофильными поверхностями кварца — хорошо установленный экспериментальный факт, следующий не только из этих измерений, но и из более ранних экспериментов [15], а также измерений на глинах [16], на силикагелях [17], экспериментов с ядерны-ми фильтрами [18] и пористыми стеклянными мембранами [19-21]. [c.9]

    Результаты этих расчетов представлены на рис. 6.10 (кривая /). Максимальные значения к близки по порядку величины к толщинам адсорбционных а-пленок воды на поверхности кварца при комнатной температуре [42]. При понижении температуры толщина пленок уменьшается, составляя л 1,5нм при —6°С. Вид температурной зависимости к(1) хорошо согласуется с полученной ранее в работе [315] температурной зависимостью толщины незамерзающих прослоек воды между поверхностью льда и частицами аэросила (кривая 2). Количественное сопоставление кривых / и 2 не имеет смысла, поскольку они относятся к различным системам в первом случае — к незамерзающим адсорбционным пленкам, граничащим с газом, и во втором — к незамерзающим прослойкам между льдом и твердой поверхностью частиц. Еще более высокие значения/г были получены для пленок воды на поверхности льда [308]. Их толщина составляет около 5,0 нм при —6°С, возрастая до 10,0 нм при повышении температуры до —1 °С. Таким образом, толщина незамерзающих слоев воды существенным образом зависит от того, в контакте с какими фазами они находятся, т. е. от природы поверхностных сил, энергии связи и способа ориентации молекул воды вблизи различных поверхностей. [c.115]

    Влияние температуры на структурные эффекты хорошо прослеживается и в опытах с пленками воды на поверхности кварца. При повышении температуры, как было показано ранее [30], постепенно уменьшается толщина полимолекулярных адсорбционных пленок, что обусловлено утончением граничных слоев воды. При 65—70 X толщина пленок падает до монослоя, что хорошо согласуется с результатами других обсуждавшихся выше экспериментов. [c.10]

    Анализ изотерм П(/г) для ос-пленок воды на поверхности кварца показал, что приближенно они следуют экспоненциальной зависимости (1.1) [47]. При этом параметр К для пленок на подложках из стекла, кварцы и слюды сохраняет примерно то же значение, что и для симметричных водных прослоек (1-ьЗ) 10 " Н/см2, но длина корреляции I выше, составляя до 10 нм для наиболее гидрофильных поверхностей и снижаясь до 1 нм при уменьшении степени гидрофильности. Повышение температуры приводит, главным образом, к падению значений I от 3,3 нм — при 20 °С до 0,8 нм — при 40 °С для пленок на слюде. Для почти гидрофобной поверхности пиролитического углерода (краевой угол 0 = 72°) меняется, как и в случае симметричных прослоек, знак параметра К —2-10 Н/см ) прп сохранении обычного порядка значений / = 0,7 нм. [c.18]

    Иногда процесс рекомбинации атомов на поверхности твердых тел является типичным гетерогенным процессом. Это проявляется в том, что скорость рекомбинации существенно зависит от химической природы поверхности. Например, наличие мономолекулярного слоя воды на поверхности кварца и стекла значительно затрудняет рекомбинацию атомов водорода и кислорода, галогениды щелочных металлов затрудняют рекомбинацию атомов хлора. На гетерогенность процесса указывает и зависимость скорости рекомбинации атомов от температуры. Понижение температуры поверхности часто способствует рекомбинации (например, рекомбинация атомов водорода с по нижением температуры ускоряется). [c.87]

    На рис. 1.5 показаны результаты экспериментов [34], выполненных в более широком, чем ранее, интервале температур от О до 90 °С. Это позволяет совместить кривые теплового расширения воды в тонких порах (1) и объемной воды 2) в области температур 80—90 °С. Теперь, зная плотность объемной воды, можно было построить шкалу плотностей р. В результате оказалось, что средняя плотность воды в тонких (г = 5 нм) порах вблизи гидрофильной поверхности кварца при 20 °С была выше примерно на 1,5%. При повышении температуры отличия плотности уменьшаются, составляя около 1% при 35°С. [c.13]

    Изменение структуры воды в тонких а-пленках на поверхности кварца подтверждено смещением полосы валентных О—Н-колебаний на 100 см в длинноволновую область ИК-спектра, что свидетельствует об усилении межмолекулярных водородных связей в структуре а-пленок [45]. [c.18]

Рис. 13.9. Интерференционная картина от смачивающей пленки, переходной зоны и мениска на поверхности кварца. Рис. 13.9. <a href="/info/302119">Интерференционная картина</a> от смачивающей пленки, <a href="/info/333823">переходной зоны</a> и мениска на поверхности кварца.

Рис. 5. Температурная зависимость толщины а-пленок /iq (при pip, = 1) воды на поверхности кварца. Рис. 5. <a href="/info/26121">Температурная зависимость</a> толщины а-пленок /iq (при pip, = 1) воды на поверхности кварца.
    На рис. 2.43 показана в логарифмическом масштабе зависимость резонансных частот f от толщины Лз стального ОК для системы кварц—масло — сталь, рассчитанная по формуле (2.52). Антирезонансная частота кварцевой пластины—10 МГц. Сплошные линии соответствуют свободным поверхностям ОК. Нагрузка поверхности кварцем вызывает повышение резонансных частот (штриховые линии). Это объясняется тем, что в пакете кварц — ОК на резонансных частотах укладывается на одну полуволну больше, чем указывает п. На частотах ниже 10 МГц толщина пластины кварца меньше полуволновой, поэтому в ОК укладывается (п-Ьб) полуволн, где б<1. Введение слоя масла приводит к промежуточным значениям резонансной частоты (штрихпунктирные линии). [c.168]

    Действительно, спектры ЯМР высокого разрешения протонов воды в дисперсиях а- и Ь -монтмориллонита [103] характеризуются сдвигом резонансного сигнала в сторону более сильного поля. Это указывает на то, что под влиянием поверхности часть водородных связей в воде граничных слоев толщиной й 7,5 нм (межчастичное расстояние —15 нм) разрушается. Приведенные результаты нашли независимое подтверждение при изучении ИК-спектров водных дисперсий Ыа-монт-мориллонитрила 20—110%-й влажности в области составной полосы (5200—4900 см ) деформационного и валентного асимметричного колебаний связей ОН (г-2 + з) [Ш]- В цитируемой работе было показано, что вклад высокочастотной составляющей 5200 СМ , относящейся к слабосвязанным молекулам воды, в интегральную интенсивность сложной полосы для дисперсий выше, чем для жидкой воды. ИК-спектры полимолекулярных адсорбционных слоев на поверхности кварца в области валентных ОН-колебаний [112] также обнаруживают увеличение поглощения при 3600 см , характерного для слабо нагруженных ОН-групп молекул воды, хотя основная полоса 3400 см сдвинута по сравнению с аналогичной полосой в спектре жидкой воды в сторону меньших частот. (Последнее, по-видимому, связано с образованием более прочных водородных связей между поверхностными гидроксильными группами кварца и адсорбированными молекулами воды первого слоя.) Таким образом, приведенные выше данные указывают на то, [c.39]

    Найдите увеличение удельной поверхности кварца (р = = 2,2 г/см ) при изменении d от 10 до 10 м. [c.102]

    Так, поверхность кварца хорошо смачивается водой, но кристалл горного хрусталя самопроизвольно не диспергируется ни в воде, ни в водных растворах. Лиофобных систем подобного типа (оксидов, нерастворимых солей и др.) чрезвычайно много. Поскольку этот обширный класс не получил еще общего названия, целесообразно называть лиофилизированными лиофобные дисперсные системы с лиофильной поверхностью раздела фаз . Она может быть лиофильной как по своей природе (например, оксид, взаимодействующий с водой посредством водородных связей), так и в результате модификации поверхности (например, путем адсорбции дифильных или полимерных молекул— см. раздел ХП1.6). [c.253]

    НгО + Н Н + 02 = 0Н + 0 0 + H2 = 0H-t-H п т. д. Подтверждением этой схемы являются следующие опыты. При встрече взаимно перпендикулярных потоков водорода и кислорода в середине большого сосуда реакция вовсе не происходила (при 530° С и низких давлениях). Если же эти газы смешать в небольшом кварцевом сосуде, то реакция со-сопровождается взрывом. Реакция также начинается и в большом сосуде, если в него ввести кварц. Это объясняется образованием на поверхности кварца гидроксильных радикалов, инициирующих цепи. Цепной механизм характерен и для других реакций горения газообразного топлива, например для окисления СО. [c.247]

    С разрушением особой структуры граничных слоев связан также и известный эффект ухудшения смачивания при повышении температуры [562]. На рис. 13.5 приводятся результаты расчетов изотерм расклинивающего давления смачивающих пленок водного 10 М раствора КС1 с добавками ионогенных ПАВ. Для молекулярных сил принята та же константа А для структурных сил — экспонента IIs= sexp(—/i/Я-), где С = = 10 Н/см и А,=0,25 нм. Исходной, без добавок ПАВ, является изотерма, показанная кривой 6. Потенциалы поверхностей кварца (ii)i) и пленки (ij]2) принимали в этом случае равными —100 мВ и —25 мВ, соответственно. Расчеты по уравнению (13.3) приводят к значению 0о = 8° (см. рис. 13.4). Влияние добавок ПАВ сводилось в проведенных расчетах к изменению потенциала вследствие адсорбции ПАВ на поверхности пленка— газ. Адсорбция анионоактивного ПАВ, повышающая отрицательный потенциал ifi2, приводила к улучшению смачивания. Так, при il]2= —35 мВ рассчитанный краевой угол уменьшается до 7°, а при 11)2 = —45 мВ—до 5°. Дальнейший рост i 52 (кривые 1—<3) обеспечивает уже полное смачивание поверхности кварца. Если же на поверхности пленки адсорбируется катионоактивный ПАВ, заряжающий поверхность пленка — газ положительно (г1)2=+Ю0 мВ), в то время как поверхность подложки остается заряженной отрицательно, краевой угол растет до 28° в связи с тем, что электростатические силы вызывают притяжение поверхностей пленки (Пе<0). Полученные результаты находятся в хорошем согласии с результатами прямых измерений краевых углов растворов КС1 с добавками анионоактивного натрийдодецилсульфата и катионоактивного цетилтриметиламмонийбромида [563]. [c.220]

    Для силикатных пород нет точной информации о снижении о под действием воды. Обзор сведений по кварцу содержится в книге [257] и в работе [258], из которых видно, насколько велик разброс литературных данных. Однако можно считать, что свободная энергия негидратированной силоксановой поверхности кварца, обнажающейся при образовании ступеньки, вряд ли успевает сильно снизиться при физической адсорбции воды или при смачивании, а термоактивируемая химическая модификация поверхности с образованием силанольных связей требует большего времени. В то же время известно, что движение дислокаций в кварце может значительно облегчаться под действием воды. По схеме, разработанной Григгсом [259], в результате диффузии воды вдоль дислокаций образуются силанольные мостики =51—ОН. .. НО—51 =, которые легко рвутся в самом слабом месте (по водородной связи). Сопротивление движению дислокаций уменьшается, и поэтому диффузия ОН-групп (или, возможно, ионов Н+ или НзО+) контролирует подвижность дислокаций и, следовательно, скорость деформации. По сути, здесь мы имеем дело с явлением, близким к адсорбционному пластифицированию, только облегчение разрыва межатомных связей происходит в другом координационном окружении — не на поверхности, а в объеме. По-видимому, такой механизм возможен и в случае многих других силикатных минералов (оливин [260] и др.). [c.89]

    Экспериментальные исследования динамических краевых углов для воды на поверхности кварца показали, что значения Bd начинали превосходить равновесные значения Вож10° при v lQ- см/с, достигая 75—80° при и>0,1 см/с [565]. Эти данные качественно согласуются с теоретическими, но расходятся [c.222]

    Принимая, что посадочная площадка иона ЦТА+ составляет 0,2 нм [510] и учитывая развитые в работе [511] представления, можно найти степень покрытия поверхности частиц кварца ионами ПАВ вблизи изоэлектрической точки. Как показал расчет, она составляет около 0,1%. Учитывая этот факт, низкую степень агрегации и ее обратимый характер можтто объяснить на основе концепции ГС. При нейтрализации поверхностного заряда ионами ЦТАБ вблизи изоэлектрической точки образуются, вероятно, более прочные и протяженные ГС, что может быть связано с возникновением более благоприятных условий для развития водородных связей на силанольных группах теперь уже незаряженной поверхности SIO2. Это некоторым образом аналогично случаю увеличения протяженности ГС при снижении степени диссоциации силанольных групп на поверхности кварца при приближении к изоэлектрической точке [24]. [c.178]

    На рис. 13.4 показаны результаты расчетов по уравнению (13.3) краевых углов 0о для водных растворов КС1 различной концентрации (кривая 1) и разных pH (кривая 2) при сохранении в последнем случае постоянной ионной силы раствора /=10 моль/л [559]. При проведении расчетов Пе(/г) использованы известные концентрационные зависимости потенциалов поверхности кварц — раствор (о]) ) и поверхности водный раствор—воздух (г з2). Для изотермы 11т=А/ 6яЬ ) приняты значения постоянной Л = 7,2-10 2° Дж. Для изотермы структурных сил принята экспоненциальная зависимость [47], параметры которой использовали в качестве подгоночных при согласовании теоретических расчетов Во с экспериментальными данными для растворов КС1 различной концентрации [561]. Рост значений Во с повышением концентрации электролита (кривая 1) объясняется, как можно показать на основании проведенных расчетов, двумя причинами уменьшением толщины граничных слоев воды с особой структурой, что ведет к ослаблению сил структурного отталкивания, и снижением потенциалов 1131 и г1з2, что уменьшает также и силы электростатического отталкивания. [c.219]

    Полученные экспериментально значения -у можно сопоставить с теорией. Большие значения равновесной толщины пленок и полное смачивание показывают, что здесь действуют преимущественно силы электростатического отталкивания. Задаваясь потенциалами поверхности кварца (il i) и поверхности пленки (%), можно по таблицам Деверо и де Бройна рассчитать изотерму электростатических сил IIe(/i). Для Ю М раствора КС1 на основании работ [14, 572] можно принять l)i = —150 мВ и г )2 = —45 мВ, а для М раствора i 3i = —125 мВ и il32 = = —45 мВ. Рассчитанные изотермы Пе(Ю при условии -ф = onst спрямляются в логарифмических координатах с коэффициентом корреляции 0,996, что позволяет аппроксимировать изотерму степенной функцией П = A/h . Для 10 М КС1 пока.затель степени и = 2,87, для 10 М и = 6. Подставляя эти значения п в уравнение (13.11), получим теоретические значения параметра у, равные 1,5 для Ю и 1,2 для 10 М растворов. Эти значения удовлетворительно согласуются с приведенными выше (см. [c.226]

    Исследование избирательного смачивания кварца изоконцент-рированными растворами асфальтенов, имеющих различное содержание металлопорфириновых комплексов, указывает на происходящую со временем инверсию смачивания, наибольшее гидрофо-бизирующее действие на поверхность кварца, смоченного водой, оказывают растворы асфальтенов с большим содержанием металлопорфириновых комплексов (рис. 12), тогда как для асфальтенов, лишенных их, краевой угол избирательного смачивания практически постоянный, не зависящий от концентрации асфальтенов в бензоле (рис. 13). [c.33]

    Таиров Н. Д., Кусаков М. М. Изучение влияния давления и температуры на смачивание нефтью и водой поверхности кварца.— Известия АН -АзССР , 1957, № 4, с. 47—59. [c.211]

    Рассчитайте электрокинетический потенциал поверхности кварца по данным, полученным при исследовании электроосмотичеекого переноса жидкости через кварцевую мембрану сила тока 2-10- А, объемная скорость раствора КС1, переносимого через мембрану, [c.108]

    Каталитическое разложение углеводороцов. Кроме упомянутых выше железного, никелевого и кобальтового катализаторов на поверхности кварца тоже возможно образование ВПУ. Так же, как и в случае получения ВПУ из оксида углерода, осаждение из углеводородов состоит из первичной активации процесса на поверхности и последующего формирования ВПУ с перемещением частички катализатора на кончике ВПУ [7-60]. [c.461]

    Несмотря на эту специфическую особенность метода, Бузаг сумел с его помощью убедительно продемонстрировать влияние -потенциала на прилипание. В табл. 9 приведены соответствующие данные. Кроме того, тем же методом ему удалось показать, что существование двух областей устойчивости связано с перезарядкой поверхности. Например, для ионов АР+ и Th +, которые перезаряжают поверхность кварца, числа прилипания растут с концентрацией до обращения в нуль -потенциала, а после перезарядки снова уменьшаются, в то время как -потенциал повышается. [c.217]

    Прямым подтверждением структурной природы устойчивости а-пленок служат наблюдения за температурной зависимостью их толщины [191. На рис. 5 показана зависимость толщины /iq (при pIps = 1) а-пленок воды на поверхности кварца от температуры, полученная методом эллипсометрии. Как уже отмечалось, П - [c.292]

    Возникновение цепей может происходить вследствие самого акта химической реакции, при которой образуются радикалы. Кроме того, образование атомов или радикалов может быть вызвано высокой температурой реакционной смеси или наличием катализаторов. Интересной иллюстрацией этого может служить реакция образования HjO. Если при низких давлениях и температуре около 530° С направить перпендикулярно друг другу потоки водорода и кислорода таким образом, чтобы они встретились в центре большого сосуда, то реакция не начнется. Однако, если эти газы смешать в малом сосуде из кварца или фарфора, то реакция сопровождается взрывом. Введение кварцевой трубки в центр большого сосуда также приводит к развитию реакции при смешении водорода и кислорода. Предполагалось, что это объясняется образованием на поверхности кварца гидроксильных радикалоЬ На + 0а = 20Н, которые приводят к образованию цепей. [c.349]


Смотреть страницы где упоминается термин Поверхность кварца: [c.238]    [c.27]    [c.9]    [c.98]    [c.179]    [c.195]    [c.167]    [c.267]    [c.313]    [c.88]    [c.88]    [c.292]    [c.292]    [c.292]    [c.294]    [c.31]    [c.19]    [c.105]    [c.83]    [c.102]   
Смотреть главы в:

Коллоидная химия кремнезема и силикатов -> Поверхность кварца




ПОИСК





Смотрите так же термины и статьи:

Кварц

Кварц поверхность удельная

Кварц также Поверхность удельная

Поверхность кристаллического кварца

Подготовка и стандартизация поверхности пластин кремния и кварца



© 2025 chem21.info Реклама на сайте