Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теорий атомности

    Согласно современной теории атомное ядро имеет оболочечное строение. Протоны и нейтроны независимо друг от друга заполняют ядерные слои и подслои, подобно тому как это наблюдается для электронов в электронной оболочке атома. [c.9]

    Разработка теории атомной связи и ионной связи (ионного взаимодействия) немецким физикохимиком Вальтером Кос-селем (1888-1956 гг.) и американским физикохимиком Гильбертом Льюисом (1875-1946 гг.). [c.283]


    Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Эта гипотеза долгое время была общепризнанной. Однако последующее изучение ядерных реакций, открытие нейтронов Чедвиком и выявившаяся возможность выделения нейтронов из любых атомных ядер (кроме протона) привели к отказу от ранее принятой гипотезы. Д. Д. Иваненко и Е. Н. Гапон (1932) и Гейзенберг (в том же году) высказали и обосновали положение, что атомные ядра состоят из протонов и нейтронов, и предложили протонно-нейтронную теорию атомных ядер. [c.51]

    Согласно протонно-нейтронной теории атомных ядер, число протонов в ядре равно заряду ядра 1 (при выражении его, как обычно, в единицах заряда электрона), а сумма числа протонов и числа нейтронов равна массовому числу А, т. е. массе атома, выраженной в единицах атомных весов и округленной до целых единиц. Таким образом, число нейтронов равно А—I. Отсюда следует, в частности, что различные изотопы данного элемента отличаются друг от друга только числом содержащихся в ядре нейтронов при одинаковом числе протонов. Оба вида частиц, образующих ядра атомов, — протоны и нейтроны — обозначаются общим термином — нуклоны. [c.51]

    Теория МО является естественным распространением теории атомных орбиталей (АО) на случай электронов молекулы. Состояние электронов многоэлектронного атома описывают в виде совокупности одноэлектронных функций — атомных орбиталей и находят путем приближенного решения уравнения Шредингера. Каждая АО описывает состояние одного электрона атома. Согласно квантовой механике (fl(r)dr есть вероятность обнаружить электрон на расстоянии г, г + dr от ядра, эта величина мала при больших г. Поэтому можно считать, что электрон находится с подавляющей вероятностью в окрестности ядра атома. [c.51]

    Основы молекулярно-кинетической теории газов, которая объяснила физический смысл газовых законов, были заложены еще в работах М. В. Ломоносова. В 1744—1748 гг. он разработал теорию атомно-молекулярного строения вещества, впервые обосновал кинетическую теорию теплоты и на основании этого объяснил многие неизвестные до него явления. В XIX в. молекулярно-кинетическая теория газов получила свое дальнейшее развитие в работах Клаузиуса, Максвелла и Больцмана. На новейшем ее этапе эта теория была в современном виде разработана Я. И. Френкелем. [c.19]


    О границе таблицы периодической системы со стороны тяжелых элементов можно говорить тогда, когда время жизни атомов элемента уже недостаточно для того, чтобы измерить его свойства. Опыт показал, что стабильность тяжелых атомов с увеличением порядкового номера быстро уменьшается. Естественный конец периодической системы определяется порядковым номером элемента, для которого среднее время жизни атомного ядра становится меньше 1 10 с. Для элементов с порядковыми номерами 108—110 время жизни около 1 10 с. Поэтому считается, что периодическая система заканчивается недалеко за этими элементами. Развитие теории атомных ядер позволило считать, что при больших порядковых номерах могут существовать так называемые острова стабильности , т. е. отдельные атомы с большим временем жизни. [c.89]

    Важным результатом теории Бора было объяснение спектра водорода. Дальнейшее развитие теории атомных спектров было сделано Зоммерфельдом (1916), который разработал более детально правила квантования. Исходя из более сложной картины движения электронов в атоме по эллиптическим орбитам, а также учитывая зависимость массы от скорости внешнего электрона, он сумел создать теорию тонкой структуры спектров водородоподобных атомов и прежде всего объяснить ряд закономерностей спектров щелочных металлов. [c.46]

    Таким образом, после прочтения настоящей главы мы убедились, что к концу 60-х годов прошлого века было неоспоримо доказано существование атомов и молекул, была разработана стройная теория атомно-молекулярного учения, на которой базировалась вся физика и химия того времени. Мы познакомились пока лишь с основными понятиями и некоторыми из основных законов химии. Подчеркнем еще раз, что атоМно-молекулярное учение базировалось на представлениях о том, что атом неделим. Вследствие этого атомно-молекулярная теория оказалась не в состоянии объяснить ряд экспериментальных фактов конца XIX и начала [c.28]

    ТЕОРИЯ АТОМНЫХ СПЕКТРОВ [c.6]

    Метод МО представляет собой естественное распространение теории атомных орбиталей (АО) на поведение электронов в молекуле. Предполагается, что электроны в молекуле находятся на молекулярных орбиталях, охватывающих все ядра атомов в молекуле, и МО занимает весь объем молекулы. Таким образом, метод МО рассматривает молекулу и другие устойчивые многоатомные системы как многоатомный атом , в котором электроны располагаются на орбиталях, называемых молекулярными. Так как на электрон молекулярной орбитали воздействует поле многих ядер, то образование МО из АО приводит к уменьшению энергии системы. Представим, что атом А, имеющий свободный или спаренный электрон, приближается к атому В. Из двух изолированных атомов образуется система, состоящая из двух ядер а и й, в поле которых находятся электроны этих атомов. Если молекула состоит из п атомов с суммарным числом электронов М, то состояние молекулы можно представить системой из п силовых центров, в поле которых находится N электронов. Такое представление о молекуле как о взаимодействующем коллективе всех ядер и электронов лежит в основе теории метода МО. Основные положения  [c.48]

    Роберт Оппенгеймер (1904—1967)—американский физик, специалист в области квантовой механики и теории атомного ядра. Был одним из руководителей работ в США по созданию атомной бомбы. В 1953 г. был отстранен от занимаемых постов за выступление против развертывания работ по водородной бомбе. [c.88]

    Бор Нильс Хендрик Давид (1885—1962)—датский физик. Создал первую квантовую теорию атома. Участвовал в разработке основ квантовой механики. Внес значительный вклад в развитие теории атомного ядра, ядерных реакции, взаимодействия элементарных частиц. Лауреат Нобелевской премии. Иностранный член АН СССР. [c.33]

    Занимаясь разработкой теории атомных спектров (линейчатых спектров и спектров рентгеновских лучей элементов), физики примерно в 1920 г. открыли, что оболочки, следующие за оболочкой гелия, содержат орбитали нескольких видов. [c.113]

    Вигнер E. Теория групп н се приложения к квантовомеханической теории атомных спектров. Пер. с англ. М. ИЛ, 1961. [c.311]

    В то время, когда было предположено существование электронного спина, Паули тоже работал над теорией атомных спектров, в частности над вопросом, почему определенные линии, появления которых следовало бы ожидать, в действительности не наблюдались. Для объяснения отсутствия этих линий он ввел принцип, согласно которому в любом атоме никакие два электрона не могут иметь одинаковые значения четырех квантовых чисел п, I, т и гпз. Затем он понял, что этот принцип позволяет объяснить периодичность электронных структур, установленную Бором. Так, на 15-орбитали может находиться один электрон [c.52]

    По основным положениям теория молекулярных орбиталей очень напоминает теорию атомных орбиталей, описанную в гл. 5. Напомним, что ядру каждого атома отвечает набор энергетических уровней, которые могут быть заняты одним или несколькими электронами в соответствии с определенными правилами. Аналогично этому в молекуле, состоящей из двух или [c.114]


    КВАНТОВАЯ ТЕОРИЯ АТОМНОЙ ПОЛЯРИЗУЕМОСТИ [c.351]

    Бор — глава крупной научной школы в области теоретической фи.чики, автор нсрвоня-чальной квантовой теории строения атома (191 1—1916 гг.), послужившей исходным пунктом современной квантовомеханической теории строения атома в 1913 г. установил принцип соответствия между классическими и кванто-пыми представлениями ему принадлежат также работы по теоретическому объясиеинк.1 периодического закона Д. И. Менделеева и по теории атомного ядра. В 1922 г, награжден Нобелевской премией. С 1929 г. — иностранный член Академии иаук СССР. [c.68]

    Вот и подошла к концу вторая глава этой книги. Самое время остановиться и оглянуться назад. Мы открыли для себя рабочий язык (символы, фopмyльi и уравнения), методы лабораторной работы, основные законы (закон сохранения материи и периодический закон) и теории (атомно-молекулярную) химии и то, как с их помощью можно понять некоторые интересные для всех вещи. Главным из рассматриваемых прикладных вопросов было то, как используются на Земле природные ресурсы и сколько их имеется. Вода, мeтaлльi, нефть, пища, воздух, основные отрааш промышленности и даже наше здоровье - все это те ресурсы, которые надо расходовать с максимальной пользой для людей, уменьшая при этом нагрузку на окружающую среду. [c.162]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    Адиабатическое приближение широко применяют в квантовой теории атомно-молекулярных систем. Рассмотрим сейчас простейший случай. Пусть равновесная конфигурация молекулы соответствует значению Лэксп ядерных переменных. Рассмотрим в окрестности Лэксп решение уравнения (2.10), соответствующее основному состоянию электронной подсистемы. Пусть это состояние ti(rlR) не вырождено, и его адиабатический потенциал K i(R) в рассматриваемой области значений R отделен достаточно большой энергетической щелью от адиабатических потенциалов возбужденных состояний электронной подсистемы. В этом случае адаабатический потенциал K i(R) имеет минимум в некоторой точке Rq вблизи RsK n, которая определяет теоретическую равновесную конфигурацию молекулы. В этом случае считают, что (r R) описывает электронное состояние молекулы, тогда как функция Ф(Н), получающаяся при решении уравнения (2.11), - колебания молекулы, а также вращение и поступательное движение молекулы как целого. [c.49]

    В случае металлических катализаторов (Pt, Pd, Fe и др.) центром каталитической активности, согласно теории атомных ансамблей (Н. И. Кобозев, 1936), является докристаллическая фаза, представляющая собой отдельные атомы ката- [c.141]

    Михаил Васильевич Ломоносов — великий русский ученый — одни из основоположников новой химии. Он открыл основной закон химии — закон сохранения массы веществ. Разработал теорию атомно-молекуляриого строения веществ, являющуюся основой физики и химии. Ввел в химию количественные методы исследования. Объединил химию с физикой, создал новую науку — физическую химию. Большим вкладом в науку являются его работы по исследованию растворов. С имеием Ломоносова связано развитие в России различных иаук. Историк, ритор, механик, химик, минералог, художник и сти.хотворец — он все испытал и все проник , — писал о нем А. С. Пушкин. [c.4]

    Лауз Макс фон (1879—1960) — немецкий физик (ФРГ). Открыл дифракцию рентгеновского излучения на кристаллах. Работы по сверхпроводимости, квантовой теории, атомной физике. Лауреат Нобелевской премии. Почетный член АН СССР. [c.196]

    В теории атомных ядер часто пользуются моделью, уподобляющей ядро заряженной капле жидкости. Расчет такой системы показывает, что при достаточном возрастании зарядя [c.523]

    Теория конденсированной матфии, в особеиностн жидкого гелия Вклад в теорию атомного ядра и элементарных частиц Открытие оболочечной структуры атомного ядра [c.778]

    II А = у. С гедонател1.но, исно, 1ьмуя аналогию иу теории атомных спектров, л) ) кио записать общее уравнение и ииде [c.199]


Библиография для Теорий атомности: [c.365]    [c.200]    [c.247]    [c.201]    [c.230]    [c.297]   
Смотреть страницы где упоминается термин Теорий атомности: [c.419]    [c.62]    [c.297]    [c.246]    [c.3]    [c.269]    [c.305]    [c.310]    [c.219]    [c.451]    [c.324]   
Очерк общей истории химии (1979) -- [ c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная теория



© 2024 chem21.info Реклама на сайте