Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клаузиуса работы

    Поделив неравенство (4.31) на Т, получим неравенство Клаузиуса, которое определяет, что термодинамически необратимые процессы в изолированной системе проходят только с возрастанием энтропии. Неравенство (4.31) может быть доказано с помощью логических рассуждений при рассмотрении работы тепловой машины. [c.94]

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, как и первый, был установлен как постулат, обоснованный опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо из следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, ио существу равноценные. [c.212]


    В работе следует ознакомиться со статическим методом измерения давления насыщенного нара определить зависимость давления насыщенного пара от температуры для исследуемого вещества математически выразить эту зависимость нри иомощи уравнения Клапейрона — Клаузиуса (константы уравнения определить нз полученных опытных данных). [c.169]

    Термодинамика как наука была оформлена в работе французского ученого С. Карно (1796—1832) Размышления о движущей силе огня и о машинах, способных развивать эту силу , в которой были изложены основы теории работы тепловых машин. В это же время создается метод циклов, который начинает применяться не только для изучения работы тепловых машин, но и для исследования термодинамических процессов типа фазовых переходов. Этот метод был использован Р. Клаузиусом для изучения термодинамики процесса испарения жидкостей. После введения некоторых упрощений было получено уравнение для расчета процессов фазового превращения веществ в разных агре- [c.13]

    В своих работах французский физик Никола Леонар Сади Карно (1796—1832), английский физик Уильям Томсон, впоследствии лорд Кельвин (1824—1907), и немецкий физик Рудольф Джулиус Эмануэль Клаузиус (1822—1888) развили механическую теорию теплоты. Было показано, что при самопроизвольном переходе теплоты от точки с более высокой температурой к точке а более низкой температурой работа производится только в случае существенной разности температур, ибо часть теплоты неизбежно рассеивается в окружающую среду. Этот вывод можно обобщить и распространить на любой= вид энергии. [c.108]

    Постулат В. Томсона определяет, что циклически действующая тепловая машина будет являться источником работы, если рабочее тело участвует в круговом процессе между нагревателем и холодильником, которые находятся при разных температурах. Рабочее тело тепловой машины принимает от нагревателя теплоту в количестве при температуре T и передает холодильнику теплоту в количестве Са при температуре Т2 (Т2<.Т ). Разность теплот С]— 2 определяет количество теплоты, пошедшее на производство работы, Численные значения КПД могут быть определены по формулам, приведенным выше. Объединяя формулы (4.4) и (4.5), можно для обратимого процесса из них получить соотношение, определяющее принцип существования энтропии. Однако вначале для выявления новой функции рассмотрим две теоремы Карно С. и Клаузиуса Р. [c.88]


    Первая теорема. Карно и Клаузиус доказали теорему о том, что КПД тепловой машины, работаюшей по обратимому циклу, не зависит от природы рабочего тела и его состояния, а зависит только от температур нагревателя и холодильника. Эта теорема доказывается путем логического обсуждения работы двух сопряженно работающих тепловых машин. Пусть первая из машин работает в прямом (1), а вторая (2) в обратном направлении. [c.88]

    Пусть обе машины работают совместно так, что работа Л,у, полученная в машине //, затрачивается в машине I. При этом нагреватель отдает машине II теплоту Q,, и получает от машины / теплоту Q,. Так как Q/>Q// [уравнение (П1, 3)1, то в итоге нагреватель получает теплоту (Q,—Q,,). Холодильник отдает теплоту (Q l—Q/i), равную Q,—Q,,. Суммарная же работа обеих машин равна нулю (А,——А,,). Таким образом, единственным результатом совместного действия двух машин является перенос теплоты от холодильника к нагревателю. По второму закону термодинамики (формулировка Клаузиуса) это невозможно и, следовательно, предположение, что неправильно. [c.82]

    Было установлено, что теплота переходит в механическую работу и наоборот — работа в теплоту в строго эквивалентных соотноще-ниях (механический эквивалент теплоты, термический эквивалент работы). Вообще оказалось, что и различные другие виды энергии переходят друг в друга в эквивалентных соотношениях. Так эмпирическим путем был открыт и сформулирован закон сохранения энергии, являющийся одним из важнейших всеобщих законов природы в замкнутой системе сумма всех видов энергии постоянна при их взаимопревращениях энергия не теряется и не создается вновь. Этот закон был назван Клаузиусом первым началом термодинамики. [c.36]

    В данной работе следует ознакомиться с динамическим методом измерения давлений насыщенных паров, определить зависимость давления насыщенного пара от температуры для чистого вещества, математически выразить эту зависимость ири помощи уравнения Клапейрона Клаузиуса. [c.172]

    Вот отзыв Гиббса о первой работе Клаузиуса Работа составляет эпоху в истории физики. Если мы ска кем словами, примененными Максвеллом несколько лет назад, что термодинамика это наука с прочными основами, ясными понятиями и четкими границами , и спросим, когда были заложены эти основы, установлены понятия и проведены границы, то ответ может быть только один конечно, не раньше опубликования работы Клаузиуса [17]. [c.148]

    Основы молекулярно-кинетической теории газов, которая объяснила физический смысл газовых законов, были заложены еще в работах М. В. Ломоносова. В 1744—1748 гг. он разработал теорию атомно-молекулярного строения вещества, впервые обосновал кинетическую теорию теплоты и на основании этого объяснил многие неизвестные до него явления. В XIX в. молекулярно-кинетическая теория газов получила свое дальнейшее развитие в работах Клаузиуса, Максвелла и Больцмана. На новейшем ее этапе эта теория была в современном виде разработана Я. И. Френкелем. [c.19]

    В работах Больцмана, Смолуховского и других ученых показан статистический характер второго закона термодинамики и количественно изучены наблюдаемые отклонения от этого закона. Этими работами окончательно показана несостоятельность антинаучной идеи тепловой смерти вселенной, высказанной Клаузиусом. [c.106]

    Выводы Клаузиуса о тепловой смерти вселенной незакономерны, так как термодинамические свойства конечной изолированной системы распространялись им иа вселенную, безграничную в пространстве и времени. Работы Больцмана и других ученых, установивших ограниченный статистический характер второго закона термодинамики, показали возможность и необходимость наличия во вселенной любых по величине отклонений от требований второго закона для равновесных систем. Само представление о движении вселенной (как целого) к равновесию незакономерно. [c.106]

    Однако в пользу классического пути построения второго начала говорят следующие соображения. Метод и границы термодинамики приводят к неизбежности концентрировать внимание на взаимных превращениях теплоты и работы, как макроскопических форм передачи энергии. Сама математическая формулировка первого закона термодинамики связана с этим обстоятельством. Всякие попытки формулировать закономерность, которой следуют все наблюдаемые взаимные превращения теплоты и работы, естественно приводят к формулировкам Клаузиуса, В. Томсона или Планка. Ограничения возможности превращения теплоты в работу приводят к общим критериям направления процесса и условиям равновесия. [c.109]

    Подобие критических явлений в объектах разной природы позволяет рассматривать их с единой точки зрения. В 19 веке наиболее полно были исследованы переходы пар - жидкость и газ - жидкость. В работах Ван-дер-Ваальса, Клаузиуса, Дитеричи было получено приведенное уравнение состояния и сформулирован закон соответственных состояний [12] для приведенных величин. Приведенные значения получают делением количественных значений свойств на критические свойства. Согласно закону соответственных состояний у сходных по природе веществ приведенное давление насыщенного пара является универсальной функцией температуры, а энтропия парообразования является универсальной функцией приведенной температуры (уточненное правило Трутона о равенстве отношений теплот парообразования различных жидкостей к их температурам кипения). Питцер и Гутенгейм развили теорию соответственных состояний для жидкостей. Для всех объектов существуют определенные физические величины, температурная зависимость которых вблизи точек переходов различной природы почти одинакова. Отсюда следует предположение об изоморфно-сти критических явлений термодинамические функции вблизи критических точек одинаковым образом зависят от температуры и параметра порядка при соответствующем выборе. термодинамических переменных. [c.21]


    Проведенный Гельмгольцем анализ теплоты, работы и энергии убедил Фарадея и Томсона. С экспериментальными данными Джоуля постепенно начали соглашаться. В конце концов, немецкий физик Рудольф Клаузиус (1822-1888) сформулировал в 1850 г. первый закон термодинамики в таком виде, как он обычно излагается в наше время  [c.11]

    Это неравенство для изолированной системы определяет, что спонтанные процессы в них проходят только с конечной скоростью, сопровождаемые возрастанием энтропии. Равновесные процессы протекают без изменения энтропии на каждой стадии, то есть 51=5г. Для необратимых процессов по знаку изменения энтропии можно определить тип процесса и направление его протекания. Для равновесных процессов по знаку изменения энтропии также можно предсказывать направление протекания процесса при данном изменении Р, Т и V. Так, если Д5>0, то она характеризует возможность самопроизвольного протекания процесса, при Д5< 0 возможно протекание процесса только при затрате работы. Последние процессы не могут быть осуществлены в изолированной системе и они не изучаются в термодинамике необратимых процессов и классической термодинамике. Возрастание энтропии Клаузиус распространил от изолированных систем на Вселенную и высказал предположение о возможной [c.96]

    Этот процесс не вполне обратим. В качестве примера снова упомянем тормозящий автомобиль, о котором уже говорилось в разд. 3-6. В общем случае невозможно преобразовать беспорядочное молекулярное движение в координированное движение всего тела как единого целого со 100%-ной эффективностью. Невозможность осуществления такого процесса является содержанием второго закона термодинамики. В середине XIX в. были предложены две несколько отличающиеся формулировки этого закона. Одна из них, предложенная Вильямом Томсоном, гласит Невозможно превратить какое-либо количество теплоты полностью в работу без того, чтобы часть этой теплоты не оказалась растраченной при более низкой температуре . Вторая формулировка принадлежит Рудольфу Клаузиусу Невозможно осуществить перенос тепла от более холодного тела к более горячему телу, не затрачивая для этого работу . Обе формулировки представляют со- [c.54]

    Интеграл Клаузиуса для необратимых термодинамических циклов и математическое выражение второго начала термодинамики. Максимальная работа системы [c.106]

    На основе исследований Р. Майера (1842), Д. Джоуля (1843) и Г. Гельмгольца (1847 г.) была установлена эквивалентность теплоты и различных видов работ, что позволило сформулировать 1-й закон термодинамики. Этому же способствовал закон Г. И. Гесса о тепловых эффектах химических процессов (1738 г.). В 1850 г. Р. Клаузиус обосновал существование внутренней энергии и независимо от В. Томсона (1848 г.) сформулировал 2-ой закон термодинамики. В. Томсон (лорд Кельвин) вводит понятие абсолютной температуры, а Клаузиус на основе [c.14]

    Из практики известно, что энергия в форме теплоты может спонтанно переходить от горячего тела к холодному, в то время как обратный процесс, без затраты работы, практически в ограниченных рамках земли никогда не наблюдается. Р. Клаузиус в 1850 г. эти практические сведения обобщил в такую формулировку невозможно построить машину, которая, действуя посредством кругового процесса, будет переносить теплоту от холодного тела к горячему без компенсации, то есть такой процесс не может протекать самопроизвольно. Невозможен самопроизвольный переход теплоты от менее нагретого тела к более нагретому. Это одна из формулировок 2-го закона термодинамики, которая имеет вид  [c.86]

    При рассмотрении работы тепловой машины по необратимым процессам холодильник получит несколько больше приведенной теплоты, чем в обратимом процессе. Это снижает КПД тепловой машины. С учетом теоремы Клаузиуса обобщенное выражение 1-го и 2-го законов термодинамики запишется в таком виде  [c.96]

    Клапейрон применил результаты Карно к равновесию жидкость — пар и вывел соотношение, названное позднее уравнением Клаузиуса — Клапейрона. Соотношение содержало неизвестную функцию температуры, которую вскоре Клаузиус идентифицировал как абсолютную температуру. 1840—1845. Джоуль экспериментально доказал эквивалентность теплоты и механической работы. Результаты были опубликованы в 1845 г. [c.11]

    Клаузиус опубликовал работу, ,0 движущей силе теплоты и законах учения о теплоте, которые отсюда можно вывести . [c.11]

    Примерами таких процессов являются возникновение теплоты трения за счет механической работы или возникновение джоулева тепла за счет электрического тока. Очевидно, что в обоих случаях обратные процессы невозможны. Они противоречили бы принципам Томсона и Клаузиуса ( 4). Фактически приведенный эмпирический закон пред- [c.63]

    Томсон на основе работ Карно, Джоуля и Клаузиуса сформулировал оба основных закона термодинамики. [c.12]

    Клаузиус ввел термин энтропия. Эта работа содержит знаменитую фразу , ,Энергия мира постоянна. Энтропия мира стремится к максимуму . [c.12]

    Гиббс опубликовал работу, ,0 равновесии гетерогенных веществ , в которой применил общие термодинамические представления к гетерогенным системам и химическим реакциям, вывел из общей формулировки условия равновесия для различных специальных случаев и ввел характеристические функции. Эпиграфом статьи было приведенное выше высказывание Клаузиуса. [c.12]

    Пусть обе машины работают одновременно и в противоположных направлениях. В соответствии с условиями (4.2) результирующая работа должна бы быть равной нулю, но вследствие того, что Q l< Ql, дополнительное количество теплоты должно перейти к более нагретому резервуару, что противоречит постулату Клаузиуса. [c.20]

    Термодинамика занимается изучением форм энергии, вне зависимости от положения исследуемого тела в пространстве. Этот вид энергии участвует во всех термодинамических процессах, т. е. во взаимопревращениях теплоты и работы. Впервые эта форма энергии была описана основателем теоретической термодинамики, немецким физиком Клаузиусом и названа внутренней энергией. Она обозначается буквами О — для термодинамической [c.47]

    Клаузиус первый правильно объяснил действие тепловой машины, объединив принцип эквивалентности с идеей Карно о двух источниках теплоты с различными температурами. Он писал По предположению Карно, производство работы имеет своим экви-лентом только переход от более горячего тела к более холодному без уменьшения количества теплоты. Последняя часть этого предположения (количество теплоты не уменьшается) противоречит первому началу термодинамики и должна быть, если мы хотим соблюдать это начало, отброшена. Мы больше не нуждаемся в другом эквиваленте произведенной работы, после того как мы в качестве такового приняли действительное исчезновение теплоты. Остается, однако, возможным, что переход теплоты происходит одновременно с исчезновением теплоты. ..  [c.89]

    В формулировке второго начала, данной В. Томсоном, невозможно теплоту какого-либо тела превратить в работу, не произведя никакого другого действия, кроме охлаждения этого тела, как и в формулировке Клаузиуса, указывается на невозможность превращения тепла в работу без компенсации. [c.89]

    Современная наука начисто отвергает ложную концепцию о тепловой смер-ти> мира. Накопленный человечеством опыт убедительно доказывает, что мир бес-конечен и развитие его происходило вечно и вечно будет продолжаться. Основа ошибки Клаузиуса заключается в том, что второе начало термодинамики в отличие от первого начала ие является абсолютным законом природы, а имеет отно- сительный характер, что было показано в работах Больцмана (1895) и Смолухов-. ского (1914). Нельзя рассматривать Вселенную как замкнутую изолированную ко-, вечную систему, а потому к ней неприменимо второе начало термодинамики. Естественно считать, что при иных условиях существования материи, сильно отличающихся от тех, которые имеют место на Земле, процессы могут протекать и в обратном направлении, т. е. с убыванием энтропии. Об этом свидетельствуют наблюдения астрономов и астрофизиков за рождением новых звезд, новых миров. [c.74]

    Для количественной оценки степени необратимости реальных процесссов преобразования тепла в работу Клаузиусом было введено представление о новом термодинамическом параметре, полу-90 [c.90]


Смотреть страницы где упоминается термин Клаузиуса работы: [c.79]    [c.219]    [c.219]    [c.283]    [c.11]    [c.19]    [c.19]    [c.234]    [c.167]    [c.219]    [c.219]    [c.283]   
Понятия и основы термодинамики (1962) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Клаузиус



© 2024 chem21.info Реклама на сайте