Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтрон открытие

    Открытие нейтрона было осуществлено в результате облучения мишени из 4Ве а-частицами. Написать полное и сокращенное уравнения реакции. Указать дочернее ядро. [c.35]

    Первая искусственно осуществленная ядерная реакция была реализована супругами Ирен и Фредериком Жолио-Кюри 1з А1(а, я)15 Р, она привела к открытию искусственной радиоактивности. Эта реакция происходила при облучении образца металлического алюминия а-частицами (тип ядерной реакции а, л). В результате образовался искусственный радиоактивный изотоп фосфора и происходило выбрасывание нейтронов. Другая ядерная реакция того же типа 5 °В(а, га)7 Ы, осуществленная ими же, — это облучение бора а-частицами, при котором образовался радиоактивный изотоп азота и тоже выделялись нейтроны (тип а, п). [c.219]


    В результате успешного проведения первых ядерных реакций были получены уже известные, встречающиеся в природе изотопы. Однако полученные таким образом нейтронно-протонные комбинации могли отличаться от комбинаций, характерных для природных изотопов. Ведь первые органические молекулы, синтезированные химиками, отличались от молекул природных соединений (см. гл. 6). Нейтронно-протонные комбинации нового типа были получены в 1934 г. французскими физиками супругами Фредериком Жолио-Кюри (1900—1958) и Ирен Жолио-Кюри (1897—1956) (дочь известных физиков супругов Кюри, прославившихся открытием радия, см. гл. 13). [c.172]

    Решающую роль в развитии ядерной химии сыграло открытие в 1939 р. процесса деления ядер урана тепловыми нейтронами  [c.661]

    Однако к моменту открытия периодического закона только лишь стали утверждаться представления о молекулах и атомах. Причем атом считался не только наименьшей, но и элементарной (т. е. неделимой) частицей. Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. В 1896 г. французский физик А. Беккерель обнаружил, что материалы, содержащие уран, засвечивают в темноте фотопластинку, ионизируют газы, вызывают свечение флюоресцирующих веществ. В дальнейшем выяснилось, что этой способностью обладает не только уран. Титанические усилия, связанные с переработкой огромных масс урановой смоляной руды, позволили П. Кюри и М. Склодовской открыть два новых радиоактивных элемента полоний и радий. Последовавшее за этим установление природы а-, (5- н у-лучей, образующихся при радиоактивном распаде (Э. Резерфорд, 1899 —1903 гг.), обнаружение ядер атомов диаметром 10 нм, занимающих незначительную долю объема атома (диаметр 10 нм) (Э. Резерфорд, 1909— 1911 гг.), определение заряда электрона (Р. М и л л и к е н, 1909— 1914 гг.) и доказательство дискретности его энергии в атоме (Дж. Ф р а н к, Г. Г е р ц, 1912 г.), установление заряда ядра, равного номеру элемента (Г. Мозли, 1913 г.), и, наконец, открытие протона (Э. Резерфорд, 1920 г.) и нейтрона (Дж. Чедвик, 1932 г.) позво или предложить следующую модель строения атома  [c.23]

    Открытие нейтронов английским физиком Джемсом Чедвиком (1891-1974 гг., лауреат Нобелевской премии 1935 г.). [c.284]

    С открытием нейтрона (см. гл. 12) у химиков появились новые возможности. Нейтроны представляют собой незаряженные частицы, и атомные ядра их не отталкивают. Направив нейтрон в нужном направлении, его легко можно заставить столкнуться с ядром. [c.174]

    Вскоре после открытия нейтрона (1932) советские ученые Д. Д. Иваненко и Е. Н. Гапон создали протонно-нейтронную теорию строения ядра. Согласно этой теории ядра всех атомов, кроме ядра атома водорода, состоят из 2 протонов и (A—Z) нейтронов, где Z — порядковый номер элемента, А — массовое число. [c.65]


    Итальянский физик Энрико Ферми (1901—1954) первым обстоятельно изучил бомбардировку нейтронами. Свою работу он начал почти сразу же, как только узнал об открытии нейтрона. Он обнаружил, что пучок нейтронов инициирует ядерные реакции особенно эффективно, если он проходит через воду или парафин. Легкие атомы этих веществ при каждом столкновении поглощают некоторое количество энергии нейтронов, но самих нейтронов при этом не поглощают. Следовательно, нейтроны замедляются настолько, что в конечном итоге движутся со скоростью обычных молекул, находящихся при комнатной температуре. Такие тепловые нейтроны находятся вблизи отдельных ядер в течение секунды или немногим более, следовательно, вероятность того, что ядро поглотит нейтрон, в этом случае выше, чем при бомбардировке быстрыми нейтронами. [c.174]

    Другая трудность заключалась в том, что не каждый атом урана, поглотивший нейтрон, претерпевает ядерное расщепление. Ядерному расщеплению подвергается довольно редкий изотоп — уран-235. Поэтому необходимо было разработать способы отделения и накопления данного изотопа. Это была беспрецедентная задача разделение изотопов в таких больших масштабах никогда ранее не проводилось. Исследования показали, что в этих целях можно использовать гексафторид урана, поэтому одновременно требовалось отрабатывать методику работы с соединениями фтора. После открытия плутония, который, как выяснилось, также подвергается ядерному расщеплению, было налажено производство его в больших количествах. [c.178]

    Изучение явления радиоактивности первоначально привело к предположению, что ядра различных атомов построены из протонов и электронов. Эта гипотеза долгое время была общепризнанной. Однако последующее изучение ядерных реакций, открытие нейтронов Чедвиком и выявившаяся возможность выделения нейтронов из любых атомных ядер (кроме протона) привели к отказу от ранее принятой гипотезы. Д. Д. Иваненко и Е. Н. Гапон (1932) и Гейзенберг (в том же году) высказали и обосновали положение, что атомные ядра состоят из протонов и нейтронов, и предложили протонно-нейтронную теорию атомных ядер. [c.51]

    Бериллий сыграл важнейшую роль в истории открытия искусственной радиоактивности. В 30-е годы нашего столетия было установлено, что бомбардировка бериллия а-частицами, например из На, приводит к возникновению нового излучения — бериллиевых лучей , которые, как впоследствии оказалось, представляли собой поток нейтронов  [c.25]

    Открытие А. Беккерелем (1896 г.) радиоактивности урана показало, что химические элементы могут превращаться друг в друга. Наиболее часто встречается р--распад (бета-распад) ядер ядро испускает электрон (Р -частицу) за счет превращения одного нейтрона ядра в протон  [c.14]

    Очень важную роль в развитии ядерной химии сыграло открытие в 1939 г. процесса деления ядер урана под воздействием нейтронов. Это открытие заложило основы атомной энергетики. Процесс распада ядер при бомбардировке урана-235 нейтронами сопровождается выделением множества различных элементов и частиц. Одну из возможных реакций отражает следующее уравнение  [c.37]

    Применение ускоряемых различными способами до больших энергий частиц (протонов, дейтонов и др.), а также возникающих при ядерных реакциях нейтронов, привело к открытию новых реакций. К. Андерсон (1932) наблюдал в камере Вильсона образование двух частиц, одинаковых по массе и имеющих разные заряды. Одна из них — электрон (е-), другая — позитрон (е+). Позитроны могут существовать лишь очень короткое время, и, встречаясь с электроном, соединяются с ним, образуя два фотона л естких у Лучей [c.21]

    Критическая масса куска урана (93,5 М ) в форме открытого шара 50 кг, шара с отражателем нейтронов 20 кг, а вещества в водном растворе — менее 1 кг. Почему критическая масса в водном растворе намного меньше  [c.31]

    Таким образом, бериллий был непосредственным участником открытия нейтронов. [c.25]

    Мы ознакомились со следующими элементарными частицами протоном, нейтроном, электроном, позитроном, нейтрино и антинейтрино, фотоном. Однако перечень их этим списком не исчерпывается. В результате исследования ядерных реакций, свойств вещества в поле высокой энергии (до десятков Бэв), космических лучей были открыты новые элементарные частицы и античастицы микромира. Общее число их превышает 30. [c.76]

    Изучение строения вещества приводит к открытию все более тонких деталей его структуры, постепенно углубляет и расширяет наши знания о нем. Такие частицы, как электрон, протон, нейтрон, которые несколько десятилетий назад принято было считать элементарными (простейшими), оказались сложными и делимыми. Подтвердилось гениальное предвидение В. И. Ленина, писавшего в 1908 г., что электрон так же неисчерпаем, как атом. [c.21]

    Изучение строения вещества приводит к открытию все более тонких деталей его структуры, постепенно углубляет и расширяет наши знания о нем. Такие частицы, как электрон, протон, нейтрон, которые несколько десятилетий назад принято было считать элементарными (простейшими), оказались сложными и делимыми. [c.26]

    Состав атомных ядер. В настоящее время в ядре атома открыто большое число элементарных частиц. Важнейшими из них являются протоны (р) и нейтроны (п). Эти частицы рассматриваются как два различных состояния ядерной частицы нуклона. [c.65]


    В настоящее время в ядре атома открыто большое число элементарных частиц. Важнейшими из них являются протоны (символ р) и нейтроны (символ п). Обе эти частицы рассматриваются как два различных состояния ядерной частицы нуклона. Элементарные частицы характеризуются определенной массой и зарядом. Протон обладает массой 1,0073 а. е. м. и зарядом +1. Масса нейтрона равна 1,0087 а. е. м., а его заряд — нулю (частица электрически нейтральна). Можно сказать, что массы протона и нейтрона почти одинаковы. [c.41]

    Первое искусственное осуществление ядерной реакции (Резерфорд, 1919) положило начало новому методу изучения атомного ядра. Открытие нейтронов (Чэдвик, 1932) привело к возникновению протонно-нейтронной теории атомных ядер, предложенной сначала Д. Д. Иваненко и Е, Н. Гапоном (1932) н в том же году Гейзенбергом. Вскоре Фредерик и Ирен Жолио-Кюри (1934) открыли явление искусственной радиоактивности В 1938 г. Хан и Штрассман осуществили деление атомного ядра урана, а в 1940 г. К. Д. Петржак и Г. Н. Флеров открыли явление самопроизвольного деления атомных ядер. В 40-х годах была осуществлена цепная ядерная реакция (Ферми) и вскоре был открыт новый вид ядерных превращений — термоядерные реакции. Дальнейшее развитие ядерной физики сделало возможным использование ядерной энергии. Позднее эти явления стали использовать при химических и биологических исследованиях. В настоящее время разрабатывается проблема осуществления управляемых термоядерных реакций. [c.19]

    В результате только что рассмотренных открытий наиболее важных для химии простых структурных единиц атомных ядер стало уже четыре электрон, протон, нейтрон и позитрон. Из более сложных образований особое значение для химии имеют ядра гелия — гелионы (а-частицы) и ядра дейтерия — дейтроны (дейтоны). Эти частицы характеризуются следующими данными  [c.507]

    Физические свойства вещества зависят от атомного состава, структуры, характера движения и взаимодействия частиц. Для определения этих параметров используются разнообразные физические методы исследования. К ним относятся методы, основанные на явлении дифракции рентгеновского излучения, электронов п нейтронов. Явление дифракции рентгеновских лучей на монокристаллах было открыто М. Лауз в 1912 г. Оно явилось началом рентгеноструктурного анализа твердых тел, жидкостей и газов. Советские ученые А. Ф. Иоффе, С. Т. Конобеевский, Н. Е. Успенский, Н. Я. Селяков одними из первых применили рентгеноструктурный метод для определения геометрических размеров кристаллических решеток и их пространственной симметрии, нахождения координат атомов кристалла, обнаружения преимущественных ориентировок (текстур), возникающих при деформации твердых тел, исследования внутренних напряжений, построения диаграмм состояния. Их основополагающие работы в этой области получили дальнейшее развитие в трудах Г. В. Курдюмова, Г. С. Жданова, Н. В. Белова, В. И. Данилова, В. И. Ивероновой, А. И. Китайгородского, Б. К. Вайнштейна и др. [c.4]

    Структуру кристаллов изучают в разделах естествознания, называемых кристаллофизикой и кристаллохимией. Содержанием кристаллохимии является установление зависимости условий образования и физико-химических свойств кристаллов от их структуры и состава, изучение энергетики и выяснение природы химической связи в кристаллах. Основным методом исследований в кристаллохимии является рентгеноструктурный анализ, использующий явление дифракции рентгеновского излучения на кристаллах, открытое М. Лауэ и др. (1912). В последние десятилетия получили широкое распространение методы электронографии (дифракция быстролетящих электронов на кристаллической решетке) и нейтронографии (дифракция медленных, тепловых нейтронов на кристаллах). Каждый из этих методов обладает спецификой применения, ввиду чего совокупность их позволяет проводить структурные исследования самых различных образцов, существенно различающихся по своей природе. [c.319]

    Краткие исторические сведения. Первой открытой Э. ч. был электрон - носитель отрицат. электрич. заряда в атомах (Дж. Дж. Томсон, 1897). В 1919 Э. Резерфорд обнаружил среди частиц, выбитых из атомных ядер, протоны. Нейтроны открыты в 1932 Дж. Чедвиком. В 1905 А. Эйнштейн постулировал, что электромагнитное излучение яшяется потоком отд. квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Существование нейтрино как особой Э. ч. впервые предложил В. Паули (1930) экспериментально электронное нейтрино открыто в 1953 (Ф. Райнес, К. Коуэн). [c.470]

    В 1938 году немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами. Неожиданно они обнаружили, что одним из продуктов является элемент с порядковым номером 56 — барий. Первой поняла в чем тут дело Лиза Мейтнер, австрийский физик, ранее работавшая с Ганом и Штрассманом. Она предположила, что нейтрон при бомбардировке расщепил атом урана на две равные части. Другие ученые немедленно подтвердили открытие Мейтнер. Миру стала известна первая реакция расщепления атома. Ган и Штрассман наблюдали сложный процесс, упрощенно описываемый так  [c.337]

    В 1932 г. Дж. Чедвик открыл элементарную частицу, не обла-даюн1ую электрическим зарядом, в связи с чем она была названа нейтроном (от латинского слова neuter, что означает ни тот, ни другой ). Нейтрон обладает массой, немного превышающей массу протона (точно 1,008665 углеродных единиц). Вслед за этим открытием Д. Д. Иваненко, Е. И. Ганон и В. Гейзенберг, независимо дру1 от друга, предложили теорию состава атомных ядер, ставшую общепринятой. Согласно этой теории ядра атомов всех элементов [c.21]

    По мере открытия новых ядерных реакций становилось очевидным, что явление, которое пытается описать закон радиоактивных смещений, гораздо шире, чем возможности нынешней формулировки закона. Последний не учитывает реакции испускания (захвата) нейтрона, 2р - и 2Р -распада, двухпротонные реакции испускания и захвата, спонтанное деление [c.103]

    Изотопы бария сыграли важную роль в открытии деления урана. В опытах Ферми изучалось действие нейтронов на соединение урана. В результате нейтронного облучения возникла искусственная радиоактивность. Полученные при этом радиоактивные изотопы были по химическим свойствам сходны с радием. Используя прием извлечения очень малых количеств радия из реакционной смеси, разработанный Марией Склодовской-Кюри (с. 224), Ферми вводил в систему соединения бария, выделяя которые можно было сконцентрировать радий. И действительно, барий извлекал из раствора семидесятисекундный Т /2  [c.25]

    В заключение дадим краткую характеристику пределам периодической системы элементов. Вопрос о верхнем пределе или начале <-истемы по существу является вопросом о нулевом , доводородном злементе, заряд ядра которого равен нулю. Гще в 1920 г. Резерфорд развил подобную идею, предположив существование частицы с массой, близкой к массе атома водорода, с нулевым зарядом ядра, не имеющей никакой оболочки. По размерам эта частица должна быть близка к ядру атома водорода (Ю- м), обладать огромной проникающей способностью и охотно взаимодействовать с ядрами атомов. Этой гипотезой Резерфорд предвосхитил открытие нейтрона. [c.198]

    Ядерное деление. В конце 30-х годов итальянским ученым Э. Ферми и немецким ученым О. Ганом было открыто деление ядер урана при облучении нейтронами, а советскими учеными Петржаком и Г. Флеровым — самопроизвольное деление ядер урана. Реакция деления урана сопровождается выделением громадного количества энергии. Например, при делении 1 кг урана по реакции [c.403]

    В настояш,ее время в ядре атома открыто большое ч с ю элементарных частиц. Важнейшим r 3 них являются протоны (символ р) и нейтроны (символ л). Обе эти частицы рассматриваются как два различных состояния ядерыой частиды ну СЛона. Элементарные частицы характер )зуются определен гой массой п зарядом. Прогон обладает массой 1,0073 а. е. м. и зарядом - Т, Масса нейтрона равна 1,0087 а. е. м., а его заряд—нулю (частица электрически нейтральна). [c.20]

    В результате фундаментальных исследований в области развития учения о строении атомов химических элементов были открыты и количественно охарактеризованы элементарные частицы, обладающие массой покоя,— электроны, протоны и нейтроны. В 1891 г. английским физиком Дж. Стонеем был введен термин электрон, обозначавший единичный электрический заряд, а в 1897 г. Дж. Томсон, изучая катодное излучение в трубке Крукса, доказал, что оно представляет собой поток отрицательно заряженных частиц. Б 1909 г. Р. Малликен установил заряд электрона, равный 1,60210-10 Кл (масса электрона 9,1091 10" кг, размер 10 м). Каналовое излучение в аналогичных опытах представляло, как было установлено немецким физиком Е. Гольдштейном (1886), потоки положительно заряженных частиц, заряды которых были кратны заряду электрона или равны ему, но противоположны по знаку, а масса совпадала с массой атома водорода (1,67252-10 кг). Эти частицы были названы протонами (Дж. Томсон, В. Вин). В 1932 г. Дж. Чедвик при изучении ядерных реакций открыл нейтральную частицу с массой 1,67474-10 кг, которая была названа нейтроном. [c.189]


Смотреть страницы где упоминается термин Нейтрон открытие: [c.8]    [c.33]    [c.33]    [c.173]    [c.33]    [c.24]    [c.19]    [c.47]    [c.47]   
Краткий курс физической химии Изд5 (1978) -- [ c.19 ]

Успехи общей химии (1941) -- [ c.10 ]

Теоретическая неорганическая химия (1969) -- [ c.393 ]

Теоретическая неорганическая химия (1971) -- [ c.375 ]

Теоретическая неорганическая химия (1969) -- [ c.393 ]

Теоретическая неорганическая химия (1971) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтрон

Нейтрон открытые

Нейтрон открытые

Открытие нейтрона и позитрона

Открытие нейтрона, его масса



© 2025 chem21.info Реклама на сайте