Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродный концентрации

    Электроды этого типа обратимы как относительно катиона (например, Ag+), так и относительно аниона (С1"). Здесь можно регулировать концентрацию С1" и только таким образом влиять на концентрацию Ag , а следовательно, и на электродный потенциал, используя уравнение Нернста. Таким образом, эти электроды практически являются электродами второго рода. [c.550]


    Здесь ф° — стандартный электродный потенциал R — газовая постоянная Г—абсолютная температура F — постоянная Фарадея (96 500 Кл/моль) г — число электронов, участвующих в электродном процессе [Ох] и [Red] — произведения концентраций (активностей) веществ, принимающих участие в соответствующей полуреакции в окисленной (Ох) и восстановленной (Red) формах. [c.178]

    Зависимость электродного потенциала от концентраций веществ, участвующих в электродных процессах, и от температуры выражается уравнением Нернста  [c.178]

    Зависимость величины электродного потенциала от концентрации (активности) вещества в электролите, участвующем в электрохимической реакции, может быть установлена методами термодинамики. На электроде Me+jMe с равновесным потенциалом ф протекает электрохимическая реакция  [c.544]

    Ток обмена, согласно (17.18), является функцией концентраций участников электродной реакции [c.359]

    При подстановке значения с, = О в уравнения (137) и (138) получается максимальное значение нлотности тока на электроде, которое при избытке фона равно предельной плотности тока диффузии, а при отсутствии фона - больше предельной плотности тока диффузии в 1/(1- п+) раз. При-электродная концентрация ионов в случае отсутствия фона также будет выше, чем при избытке, так как (1- и+) < 1. [c.88]

    Однако сдвиг потенциала от обратимой величины является здесь следствием чисто концентрационных изменений и поэтому значение потенциала электрода под током можно рассматривать как новое значение равновесного потенциала ё, отличающееся от исходного ё только тем, что оно отвечает теперь другим значениям концентрации или, точнее, активпости участников электродной реакции. Иными словами, для описания диффузионного перенапряжения как явления квазиравновесного можно использовать чисто термодинамический метод. В таком случае существенными являются лишь начальное и конечное состояния системы, а пути перехода между ними, равно как и механизм, лежащий в основе этого перехода, не имеют значения. Пусть на г лектроде протекает реакция [c.299]

    Полагают, что уже в простых редокси-реакциях (ионная перезарядка) адсорбционные явления влияют на электродную кинетику. Действительно, в ходе реакции электровосстановления из ионов высшей валентности М (первичные ионы) получаются ионы низшей валентности М" (вторичные ноны), которые при выбранном режиме электролиза не подвергаются дальнейшему восстановлению. Ионы М" возникают на том же месте, где находились ранее ионы М . Если они не будут затем беспрепятственно удаляться с поверхности электрода, то скорость процесса восстановления упадет, поскольку затруднится подход способных к восстановлению частиц и уменьшится их поверхностная концентрация. Чтобы покинуть поверхность электрода, вторичные ионы должны преодолеть [c.445]


    В пленочной теории, по которой наступление пассивного состояния связано с поверхностным оксидным слоем, большое внимание уделяется его возникновению и формированию. Основными факторами, определяющими этот процесс, являются потенциал металла, а также концентрации ионов металла и ОН- Потенциал металла должен быть достаточно положительным для того, чтобы обеспечить устойчивое состояние данного оксида. Концентрации металлических и гидроксильных ионов должны быть достаточно велики, чтобы стало возможным образование соответствующих основных солей или гидроксидов, последующие превращения которых приводят к пассивирующим оксидам. Пассивность должна наступать тем легче, чем выше электродная поляризация ири анодном растворении металла и чем ниже скорость удаления ионов металла от поверхности электрода. [c.483]

    Отношение простых веш,еств к разбавленным кислотам. Окисление простых веществ за счет выделения водорода в растворах кислот протекает активнее, чем в чистой воде. Повышение концентрации ионов ОНз отвечает уменьшению отрицательного значения электродного потенциала системы Н+(р) + е == /аН2(г), поэтому число металлов, взаимодействующих по этому механизму, резко увеличивается. К тому же присутствие избытка ионов ОНз препятствует образованию гидроксидов, что также способствует переходу простых веществ в катион-иые аквокомплексы  [c.240]

    Зависимость электродного потенциала от концентрации раствора [c.544]

    А. Н. Фрумкиным, который показал, что, с одной стороны, силы электростатического взаимодействия между электродом и ионами вызывают изменение концентрации реагирующих ионов в зоне реакции, а с другой, — наличие двойного слоя сказывается на величине энергии активации электродного процесса, [c.627]

    Таким образом, стандартным электродным потенциалом называется потенциал данного электрода при концентрациях (активностях) всех веществ, участвующих в электродном процессе, равных единице. [c.179]

    Из приведенной схемы, так называемой схемы электродных балансов, следует, что и результате прохождения через систему I F электричества 1 моль калия перейдет с анода на катод, а количеств ) х.юрида калия увеличится у анода на t- г-экв и одновремешю уменьшится на ту же величину в катодном пространстве. Ес 1и начальная концентрация КС1 была Со, объемы анолнта Va п ка-толита Vu, то концентрации в анодном с и в катодном с,< пространствах  [c.107]

    Уравнение (10Л7) внешне пе отличается от общего термодинамического уравнения для электродного потенциала ирнменнтелыю к частному случаю метал-хических электродов первого рода. Нормальный потенциал Нернста можно отождествить со стандартным потенциалом, еслн вместо концентраций в уравнение (9.46) подставить активности  [c.219]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Торможения на стадиях транспортировки и чисто химического -превращения приводят к изменению концентрации участников электродной реакции вблизи электродг В результате этого изменяется равновесный потенциал электродг и появляется концентрационная поляризация. Кроме того, изменяется и концентрация частиц, участвующих в других стадиях электродного процесса, на пример в акте разряда, что следует учитывать три рассмотрении кинетики этих стадий. Влиянием концентрациолной поляризации на кинетику электродного процесса в -целом и ь[а потенциал электрода под током [c.298]

    Протекание электрохимических окислительно-восстановитель-ных реакций зависит не только от катодного потенциала (от перенапряжения), но и от заряда поверхности металла, который в первом приближении определяется значением ф-потенциала (отклонением потенциала электрода в заданных условиях от нулевой точки электродного металла). Перенапряжение служит при этом мерой восстанавливающей (или окисляющв ) способности электрода в данных условиях, а ф-потенциал определяет поверхностную концентрацию деполяризатора. [c.449]


    Электродные потенциалы не являются неизменными. Они зависят от соотношения концентраций (точнее активностей) окисленной и 1Юсстановленной форм вещества, а также от температуры, природы растворителя, pH среды и др. [c.222]

    Зависимость значения электродного потенциала от концентрации окисленной и восстановленной qюpм и температуры описывается уравнением Нернста  [c.222]

    Конечными продуктами окисления углеводородов топлив и сернистых соединений, растворимыми в воде, являются в основном карбоновые и сульфоновые кислоты [299, 300, 301]. На рис. 6.6 приведены результаты исследований кинетики электродных процессов в водных растворах бензолсульфокислоты. Последняя существенно влияет на развитие катодного процесса коррозии бронзы ВБ-23НЦ, причем предельный диффузионный ток с увеличением концентрации сульфокислоты возрастает, что можно объяснить деполяризующим действием кислоты. [c.287]

    Электрод получает положительны ) заряд и притягивает, анионы из раствора в результате на поверхности электрода образуется двойной электрический сло11 с определенным скачком потенциала. Этот электродный потенциал зависит от концентрации ионов Fe + и FeЗ Знак потенциала и его величина определяются относительно стандартного водородного потенциала  [c.553]

    Если У>и, т. е. подвижность лпнопа больше подвижности катиона, то д>0, т. е. диффузиппиьи потенциал прибавляется к разности электродных иотенциалов. Если же У<0, то диффузионный потенциал имеет обратньп" знак относительно Ец и вычитается из электродного потенциала. Величина д невелика для растворов, отношение концентраций которых равно 10, значение находится в пределах 30 мв ири / = 0,20 0,70. Для КС1 числа переноса близки к 0,5, и при т /п" = 10 1 величина д= 1 мв. [c.567]

    В уравнение (XX, 15) для электродного потенциала входит активность (для разбавленных растворов — концентрация) свободного иона металла. Поэтому, измеряя э. д. с, концентрационной цепи, в одном из растворов которой ион металла является составной частью комплексного иона, частично диссоциирующего [c.590]


Смотреть страницы где упоминается термин Электродный концентрации: [c.169]    [c.72]    [c.63]    [c.39]    [c.414]    [c.209]    [c.212]    [c.265]    [c.291]    [c.297]    [c.315]    [c.353]    [c.359]    [c.363]    [c.439]    [c.442]    [c.219]    [c.222]    [c.249]    [c.250]    [c.544]    [c.549]    [c.622]    [c.179]   
Основы аналитической химии Часть 2 (1979) -- [ c.331 ]




ПОИСК







© 2024 chem21.info Реклама на сайте