Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическая форма простых веществ

    Аллотропия (от греч. alios — другой и tropos — способ, образ) — существование одного и того же химического элемента в виде двух или нескольких простых веществ (аллотропных модификаций), различных по строению и формам. Напр., углерод существует в виае графита и алмаза. Несколько простых веществ дают элементы сера, селен, фосфор, олово, железо и др. А. вызывается либо образованием различных кристаллических форм (аллотропия формы), либо различным числом атомов химического элемента в молекуле простого вещества (аллотропия состава, напр., кислород О2 и озон Оз). [c.12]


    Не следует путать полиморфизм с аллотропией — явлением существования элемента в виде различных простых веществ независимо от их фазового состояния. Например, кислород О2 и озон Оз — аллотропные формы кислорода, существующие в газообразном, жидком и кристаллическом состояниях. Графит и алмаз — аллотропные формы углерода и одновременно его кристаллические модификации. Понятия аллотропии> и полиморфизма совпадают для кристаллического состояния простого вещества. [c.12]

    Химические элементы в свободном виде находятся в форме простых веществ. Явление существования химического элемента в виде двух или нескольких простых веществ, различающихся по количественному составу или кристаллическому строению, называется аллотропией. [c.17]

    Г. Б. Бокий отметил, что затруднения, связанные с установлением периодических зависимостей свойств соединений от положения элемента в периодической системе, значительно уменьшаются, если сравнивать свойства кристаллических форм простых веществ, т. е. соединений элемента с самим собой . Действительно, все многообразие типов структур в этом случае удается свести к шести основным типам упаковки. Типичные металлы кристаллизуются в кубической центрированной, кубической (плотнейшей), гексагональной. Координационное число для кубической центрированной упаковки равно 8, а для гексагональной и плотнейшей кубической—12. Большое значение координационного числа обусловлено отсутствием направленности химической связи в кристаллах металлов и, соответственно, стремлением атомов (ионов) металла окружить себя максимальным числом соседей . Следующие три типа решеток менее четко определены — это молекулярные решетки, например решетки твердых кислорода и азота, решетки с координационным числом К=8—N и, наконец, все прочие структуры. [c.275]

    Многие химические элементы образуют не одно, а несколько простых веществ. Эта способность химического элемента существовать в виде нескольких простых веществ называется аллотропией. Простые вещества, образованные одним и тем же элементом, называются аллотропными видоизменениями (модификациями) данного элемента. Явление аллотропии — наглядное подтверждение различия между простым веществом и химическим элементом. Существование аллотропных видоизменений связано с различным строением кристаллических структур простых веществ или с различием числа атомов, входящих в состав молекул отдельных аллотропных форм. Например, углерод имеет аллотропные формы алмаз, графит, кар-бин кислород — молекулярный кислород Og и озон Од. [c.30]


    При изменении параметров состояния температуры и давления твердые вещества индивидуального состава могут переходить из одной структурной формы в другую без изменения стехиометрического состава. Примеры таких переходов — обратимые (энантиотропные) и необратимые (монотропные) превращения модификаций ряда простых веществ и соединений (разд. 33.2.2). Предпосылкой таких процессов является подвижность элементов решетки и перенос вещества, вызванный несовершенством строения твердой фазы. Некоторые свойства твердых веществ определяются не только их структурой и характером дефектов, но и строением микрокристаллитов, в том числе их формой, размерами и составом. Особенно большое влияние строение микрокристаллитов оказывает на механические свойства твердого тела, такие, как твердость, пределы пластической деформации. Проведением специально подобранной твердофазной реакции можно добиться направленного изменения структуры. В результате повышения температуры в достаточно длительного нагревания при постоянной температуре (отжига) можно ускорить рост отдельных кристаллических зерен до больших кристаллов и рекристаллизацию, что обеспечивает улучшение некоторых свойств материала. В отдельных случаях рекристаллизация играет отрицательную роль, например приводит к понижению активности некоторых катализаторов. [c.432]

    И В растворе. Изомеры — это не просто различные кристаллические формы одного вещества, поэтому, например, ромбическая и моноклинная сера не изомеры. Комплексы металлов проявляют несколько различных типов изомерии наиболее важные из них пространственная и оптическая. Другие типы изомерии тоже будут описаны, и для каждого из них будут приведены конкретные примеры. Необходимо заметить, что в основном изомерия обнаружена только для медленно реагирующих комплексов, так как быстро реагирующие часто стремятся образовывать только самые устойчивые изомеры (гл. VI). [c.79]

    Фазовая диаграмма имеет такой простой вид только в тех случаях, когда вещество в твердом состоянии имеет одну кристаллическую форму. Многие вещества способны кристаллизоваться в различных кристаллических формах, каждая из которых устойчива в определенном интервале температур и давлений и является отдельной фазой . Рассмотрим диаграмму состояния одного из таких веществ — серы (рис. 54). Твердая сера может [c.197]

    Существование простых веществ в нескольких формах называется аллотропией, а отдельные формы — аллотропическими видоизменениями (аллотропическими модификациями). Они различаются или числом атомов в молекуле (например, кислород О2 и озон Оз), или особенностями размещения атомов относительно друг друга. На рис. 1 показано взаимное расположение атомов в кристаллических решетках алмаза и графита. [c.12]

    Все многообразие кристаллических форм различных веществ может быть сведено к 32 классам, которые объединяются в шесть кристаллических систем. Если внутри кристалла по определенным правилам нормальной установки расположить координатные оси, то его грани отсекут на них отрезки известной длины. Принадлежность кристалла к той или другой системе определится при этом относительным. расположением для него координатных осей и отношением длин отсекаемых на последних отрезков. Примеры простейших призматических и пирамидальных (точнее, бипирамидальных) форм различных систем сопоставлены на рис. ХИ-6. [c.288]

    От полиморфизма следует отличать аллотропию—явление, когда данный элемент способен существовать в виде различных простых веществ. Границы этих понятий не совпадают. Аллотропия относится и к различным кристаллическим модификациям элемента, совпадая в этом случае с полиморфизмом, и к различным по строению молекулам, различающимся по числу атомов в них (например, озон Оз и обычный кислород О2). С другой стороны, полиморфизм охватывает явления различия кристаллических форм не только простых веществ, но и химических соединений. [c.121]

    Употребляются два термина, отражающих способность веществ существовать в разных формах, — аллотропия и полиморфизм. Первый относится только к простым веществам независимо от их агрегатного состояния (кислород—озон, алмаз—графит и т. п.). Второй относится только к твердому состоянию независимо от того, простое это вещество или сложное. Таким образом, эти термины совпадают для простых твердых веществ (кристаллическая сера, фосфор, железо и др.). [c.321]

    Используется также термин полиморфизм ( много форм ). Под этим термином часто понимают разные кристаллические структурные формы простого и сложного вещества говорят, например, о полиморфных модификациях металлов и сложных вещ,еств (Т 02, 8102 и др.). Необходимо эти два понятия — аллотропия и полиморфизм —разграничивать. Понятие аллотропия относят к модификациям простых веществ, которые образует один и тот же элемент, тогда как термин полиморфизм целесообразно применять при рассмотрении модификаций одного и того же сложного вещества (АиОз, ТЮг и др.) таким образом три понятия — аллотропия, полиморфизм и изоморфизм — получат свою логическую качественную дифференциацию. [c.33]


    Под теплотой (энтальпией) образования понимают тепловой эффект образования 1 моль соединения из простых веществ, обычно находящихся в устойчивом состоянии при 25 °С и 101 кПа. Например, графит, ромбическая сера, жидкий бром, белое олово, кристаллический иод представляют собой устойчивые формы соответствующих простых веществ С, 5, Вга, 5п, Ь. Энтальпия образования выбранных простых веществ по определению равна нулю. Так, энтальпией образования КСЮз будет тепловой эффект реакции  [c.177]

    Существование аллотропических модификаций объясняется несколькими причинами 1) различным числом атомов в молекуле простого вещества (например, кислород О2 и озон Оз) 2) образованием различных кристаллических форм 3) образованием различных аморф- [c.119]

    J Атомные и ионные радиусы. Чтобы вычислить радиус атома, полагают, что он имеет шарообразную форму. Можно считать, что атомы в кристалле простого вещества касаются своими сферами. Расстояние между центрами двух соседних атомов в кристаллической решетке — важнейшая константа, называемая постоянной кристаллической решетки, обозначаемая d. Если соседние атомы одинаковы (простое вещество), то частное d/2 равно радиусу атома. Такие радиусы получили название эффективных или кажуш,ихся радиусов. [c.89]

    Молярные объемы и атомные радиусы. При характеристике размеров атомов нередко пользуются атомными радиусами, определяемыми с помощью рентгенографического анализа кристаллических структур. Выбор атомных радиусов часто связан с введением некоторых упрощений, поскольку атомы обычно не имеют сферической формы. Кроме того, атомные радиусы зависят от аллотропных модификаций, как правило, сильнее, чем молярные объемы. Поэтому для характеристики размеров атомов мы будем пользоваться молярными объемами, определяя их как частное от деления молярной массы на плотность твердой или жидкой фазы. Объем моля простого вещества V, или молярный объем, очевидно, есть термодинамическая функция температуры Т и [c.260]

    Иногда химические соединения, подобно простым веществам, могут кристаллизоваться в нескольких формах. Причина этого кроется в различном расположении атомов и молекул в кристаллической решетке. [c.12]

    Таким образом, граница между металлами и неметаллами не совпадает с границей Цинтля, а проходит по диагонали в общем направлении от бериллия к астату между элементами В — А1, 51 — Се, Аз — 8Ь, Те — Ро. Обоснованность диагональной границы между металлами и неметаллами наглядно проявляется в 18- и 32-Клеточной формах таблицы Менделеева, в которых элементы В-групп (переходные металлы), а также лантаноиды и актиниды естественным образом располагаются слева от этой границы. Все и /-элементы в виде простых веществ образуют плотноупакованные кристаллические структуры с доминирующим металлическим типом связи, хотя здесь проявляется и ковалентный вклад, обусловленный наличием дефектных внутренних электронных орбиталей. [c.243]

    Химические свойства простых веществ. При рассмотрении физических свойств простых веществ подчеркивалось, что они в основном присущи макроскопическим количествам вещества (особенно в конденсированном состоянии). Что же касается химических свойств, то они главным образом определяются свойствами атомов или молекул, поскольку химическое взаимодействие всегда протекает на атомном или молекулярном уровне. Однако реально наблюдаемая химическая активность твердых простых веществ в заметной мере зависит, например, от величины поверхности соприкосновения, ее состояния, структуры кристалла и т.п., т.е. опять-таки от макроскопических характеристик. Так, мелкодисперсный цинк (цинковая пыль) значительно энергичнее взаимодействует с кислотами, чем гранулированный. Например, цинковая пыль восстанавливает азотную кислоту до аммиака, а гранулированный цинк — только до низших оксидов азота. Хорошо известна также способность многих металлов (А1, Ре, Т1, Сг и др.) к пассивации в агрессивных окисляющих средах, хотя сами эти металлы достаточно активны. Кроме того, различные модификации одного и того же простого вещества могут заметно различаться по химической активности (например, белый и красный фосфор). Таким образом, химические свойства простых веществ представляют собой единство атомной, молекулярной и кристаллической форм химической организации со всеми характерными для них особенностями. [c.249]

    Примерами смесей такого типа могут служить смеси веществ, образующих простые эвтектики с четыреххлористым углеродом, который существует в двух кристаллических формах с точкой перехода при —48°. [c.35]

    Столбец 2. Твердое вещество. Для твердого вещества, из которого улетучивало газ, приводится формула или название. Если в оригинальной работе не даются сведения о то> ном составе или кристаллической форме твердого вещества, то приводится простейшая обычна формула [например, формула Ре(ОН)з может обозначать гидроокись железа (III) неопределе ного состава]. Соединения, образующиеся при нагревании (о кривых нагревания, см. соответс вующие примечания), не приводятся, за исключением тех случаев, когда эманационная способной была определена в стационарных условиях. Однако указаны все начальные соединения пр исследованиях кривой нагревания, даже если значения эманационной способности не был определены. Указаны все компоненты смеси, но данные приведены только для основной комш ненты. Формула в квадратных скобках означает, что данное соединение присутствовало, находилось в неактивной форме (т. е. не содержало материнского элемента инертного газа Формулы твердых веществ расположены в следующем порядке  [c.468]

    Часто аморфные и кристаллические формы — это различные состояния одного п того же вещества. Так, известны аморфные формы ряда простых веществ (серы, селена и др.), оксидов (В2О3, Ог, ОеОг и др.). Вместе с тем многие аморфные вещества, в частности большинство органических полимеров, закристаллизовать не удается. [c.159]

    В настоящее время AЯf, 293 известна примерно для 7500 веществ и частиц (для 5800 неорганических и 1700 оргрических), включая и разные агрегатные состояния и кристаллические формы веществ, а также свободные атомы, радикалы и газообразные ионы. Если к тому же присовокупить все значения, полученные другими разными методами, можно считать, что мы располагаем данными о теплотах образования примерно 8500 веществ и частиц. Легко видеть, что различные сочетания этих данных дают возможность определять путем простого расчета тепловые эффекты многих сотен тысяч разных химических реакций. В этом и заключается [c.54]

    Некоторые вещества (как простые, так и сложные), могут существовать в нескольких кристаллических формах, называемых модификациями или полиморфными формами. Это явление впоследствии получило название полиморфизма (греч. poly — много, многое morphe — форма polymorphos — многообразный). Оно было открыто в 1821 г. немецким химиком Митчерлихом. [c.34]

    Однокомпонентные диаграммы состояния. Сублимация, плавление и испарение. Примером однокомпонентной системы может служить любое простое вещество, а также химическое соединение, обладающее строго определенным составом во всех трех агрегатных состояниях, которые могут находиться в равновесии друг с другом попарно либо все вместе в зависимости от параметров состояния. Полагая наличие только одной кристаллической фазы, можно представить существование трех двухфазных и одного трехфазного равновесия для однокомпонентной системы. Обозначив твердое, жидкое и газообразное состояния соответственно S, L и V, можем указанные равновесия записать в следующей форме  [c.264]

    Полиморфные превращения в одноком-понентной системе. Реальные диаграммы состояния даже простых веществ оказываются значительно сложнее. Это обусловлено способностью вешеств одного и того же состава существовать в различных кристаллических формах, или модификациях, каждая из которых обладает своими особенностями и характеризуется определенными физикохимическими свойствами. Различным модификациям отвечает собственное п1эле на диаграмме. Кроме того, появляются линии моновариантных равновесий, разграничивающие поля этих модификаций, и тройные точки. Предположим, что вещество имеет две устойчивые модификации а и р. На рис. 47 приведен пример возможной диаграммы состояния для рассматриваемого случая. В области устойчивых состояний имеются следующие линии моновариантных равновесий кривая аО—а-модификация — пар 00 — р-модифи-кация —пар СО — жидкость — пар 0 > — а-модификация — р-мо-дификация, О ё— -модификация — жидкость. Эти линии разграничивают следующие поля аОе — а-модификация еОО й—р-моди-фикация, гО С — жидкость, аОО С —пар. В этой области диаграммы имеются тройные точки О — а-модификация — р-мо-272 [c.272]

    В 1814 г. французский фиаик А. Ампер, чтобы объяснить кристаллические формы веществ, выдвинул гипотезу об определенном расположении элементарных атомов в соединениях. В 1814 г. в статье (письмо к К. Бертолле) Об определении отношений, в которых соединяются тела в соответствии с числом и относительным расположением молекул, составляющих нх интегральные частицы А. Ампер ппсал, что при одинаковой температуре частицы всех газов, простых или сложных, находятся на одинаковом расстоянии друг от друга. Число частиц является, согласно этому предположению, пропорциональным объему газа . [c.150]

    Своеобразие коагулирования многовалентными ионами связано с процессом гидролиза. Во-первых, в результате конденсации простых продуктов гидролиза возникают полиядерные гидроксидные соединения, которые обладают гораздо более сильной коагулирующей способностью, чем катионы А1 +, Ре +. Во-вторых, для катионов А13+ и Ре + характерно образование соединений не только с ионами гидроксила, но и с ионизованными группами гидрофильных органических веществ фосфатными, сульфатными, карбоксильными и др. В-третьих, предполагается, что с ростом pH среды от 4 до 7 увеличивается степень полимеризации гидроксокомплексов, и поэтому полиядерные формы соединений алюминия можно рассматривать как промежуточное звено между простыми ионами и полиэлектролитами. Отсюда следует, что отрицательно заряженные органические примеси могут связываться с продуктами гидролиза многовалентных ионов, и в этом состоит механизм снижения цветности. Кроме того, некоторые исследователи допускают существование флокуляции, вызванной полимерными комплексами (полиэлектролитами), наподобие флокуляции высокомолекулярными соединениями. В-четвертых, при pH = 5—7,5 преобладают нерастворимые продукты гидролиза, прежде всего золь А1(0Н)з, а содержание растворимых форм ничтожно. Исследования гидроокиси алюминия показали, что первоначально образуются аморфные шарики размером 0,2 мкм, переход которых в кристаллическую форму протекает крайне медленно но возможен дальнейший рост частиц, которые при pH = 4—8 имеют в основном размер 2 мкм при pH = 8,5—9,3 преобладают частицы с размером 0,01—0,05 мкм. Золи гидроокисей алюминия и железа в дальнейшем превращаются в микрохлопья. В гелях Ре(ОН)з первичные частицы имеют размер 10—30 мкм. [c.341]

    Вещества, состоящие из атомов какого-либо одного элемента, независимо от агрегатно о состояния, называются простыми веществами. Для некоторых элементов известно несколько аллотропныч модификаций. Они различаются или кристаллическо решеткой — аллотропия формы (белый и красный оосфор), или составом молекул — аллотропия состава (кислород Ог и озон Оз). Для простых кристаллических веществ явление аллотропии отождествляется с полиморфизмом. [c.4]

    Металлические свойства простых веществ усиливаются от Аз к Bi. Азот и фосфор — типичные неметаллы. Их кристаллические решетки молекулярные. Все эти элементы образуют газообразные водородные соединения тииа ЭНз, в которых степень окисления их равна —3. М.олекулы гидридов имеют форму трехгранной пирамиды по числу трех связей, образуемых р-облака.ми валентных электронов атомов этих элементов. Дипольные моменты гидридов уменьшаются от NH3 к BIH3. В том же направлении гидриды делаются менее устойчивыми и становятся более сильными восстановителями. [c.373]

    Поли.морфиз85 (от греч. ро у — много и morphe — форма) — свойство некоторых веществ (напр., железо, сера, кварц и др.) существовать в двух или нескольких кристаллических формах. Такие формы называются модификациями или полиморфными разновидностями, а переход одной модификации в другую называется полиморфным превращением. П. широко распространен среди минералов. П. простых веществ называют аллотропными модификациями (см. Аллотропия.) Полиолефины—продукты полимеризации ненасыщенных углеводородов этиленового ряда. Практическое значение имеют полиэтилен, полиизобутилен, а также сополимеры этилена, пропилена и изобутилена. [c.105]


Смотреть страницы где упоминается термин Кристаллическая форма простых веществ: [c.663]    [c.19]    [c.142]    [c.327]    [c.116]    [c.116]    [c.435]    [c.39]    [c.62]    [c.145]    [c.31]    [c.39]    [c.362]    [c.376]   
Краткий справочник по химии (1965) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества кристаллические

Вещества простые

Кристаллическая простая

Форма вещества

Форма вещества наипростейшая



© 2025 chem21.info Реклама на сайте