Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм полимеризации, методы установления

    Для усовершенствования контроля фирмой Bayer разработан метод оценки ненасыщенности на потоке. Состав входящих продуктов и отгоняемых паров анализируется методом газовой хроматографии, и ненасыщенность (т.е. количество изопрена, вошедшего в сополимер) рассчитывают из материального баланса по изобутилену и изопрену. Вывод уравнения для расчёта ненасыщенности бутилкаучу-ка основан на инженерных принципах процесса и установлении механизма реакций и модели течения материалов в реакторе. Учитывается, что элементарными реакциями процесса полимеризации в общем случае являются инициирование, рост цепи, перенос и обрыв цепей. Тогда для реактора идеального смешения (РИС) уравнение расчета ненасыщенности бутилкаучука имеет вид хорошо известного соотношения Майо -Льюиса в случае реактора идеального вытеснени. (РИВ) необходимо интегрировать это уравнение. [c.45]


    После того как был установлен цепной механизм полимеризации, возникла проблема изучения отдельных элементарных реакций этого процесса. Как и при изучении других сложных реакций, кинетика становится одним из основных методов изучения механизма полимеризации. [c.11]

    Функции молекулярно-весового распределения. Молекулярно-весовое распределение (МБР) полимеров определяется в основном механизмом полимеризации данного полимера и поэтому может служить одним из наиболее тонких методов его исследования. Кроме того, многие свойства полимеров зависят от МВР, поэтому знание МВР необходимо для установления корреляции между механическими и иными свойствами полимера и допустимой полидисперсностью, характер и величина которой зависит от метода полимеризации. [c.323]

    О молекулярной структуре различных типов полиэтилена опубликовано много данных, полученных главным образом физическими методами. Механизму образования высокомолекулярных этиленовых полимеров посвящено большое число публикаций, но даже лучшие теории подтверждены лишь немногими твердо установленными фактами. Приборы для изучения процессов, происходящих на катализаторе, дают лишь косвенные данные, с учетом которых создаются теоретические представления. Теории катализа и механизм реакции полимеризации должны по меньшей мере согласовываться с данными о структуре полимера, которая хорошо изучена. В этом разделе мы прежде всего рассмотрим сведения о структуре полимера, а затем уже предлагаемые механизмы полимеризации, которые окажутся совме-, стимыми с известной структурой полимера и структурой катализатора. [c.176]

    Когда получают полимер с каким-либо компонентом, содержащим радиоактивный атом, этот компонент можно обнаружить в конечном полимере ПО его радиоактивности. Высокая чувствительность определений радиоактивности делает такие анализы чрезвычайно полезными. Анализ полимеров радиохимическими методами развивался по мере того, как радиоизотопы становились более доступными. Литература начала 40-х годов содержала всего несколько примеров, в настоящее же время можно найти большое число работ. Задачами такого анализа обычно было установление механизма нолимеризации и структуры полимерных молекул. Например, можно проследить судьбу инициатора и передатчика цепи и сопоставить ее с другими кинетическими данными. Можно определить молекулярный вес полимера на основе принятого механизма полимеризации и структуры молекул. [c.325]


    Методы установления механизма радиационной полимеризации [c.232]

    Оси. работы посвящены изучению р-ций свободных радикалов, механизма полимеризации и синтеза ка-учуков, установлению связи между их структурой и св-вами. Открыл и исследовал (1939) явление окисл.-восстановит. инициирования радикальных процессов, в результате чего разработал системы, способные инициировать р-ции при низких т-ратурах (до —50 С). Создал основы синтеза каучуков методом эмульсионной полимеризации. Изучал стереоспецифическую полимеризацию диенов и разработал (1957) технологию получения стерео-регулярного бутадиенового каучука. [c.152]

    Хотя деструкция часто является нежелательной побочной реакцией, ее нередко проводят сознательно для частичного снижения степени полимеризации, чем облегчаются переработка и практическое использование полимеров. Например, в производстве лаков на основе эфиров целлюлозы, когда непосредственное растворение этих веществ дает слишком вязкие растворы, неудобные для нанесения покрытий, исходную целлюлозу подвергают предварительной деструкции. Частичная деструкция (пластикация) натурального каучука на вальцах облегчает его переработку в резиновые изделия. Реакция деструкции используется для установления химического строения полимеров, для получения ценных низкомолекулярных веществ нз природных полимеров (гидролитическая деструкция целлюлозы или крахмала в глюкозу, белков в аминокислоты), при синтезе привитых и блок-сополимеров и т. д. Изучение деструкции дает возможность установить, в каких условиях могут перерабатываться и эксплуатироваться полимеры оно позволяет разработать эффективные методы защиты полимеров от различные воздействий, найти способы получения полимеров, которые мало чувствительны к деструкции, и т. д. Знание механизма и закономерностей деструкции дает возможность усилить или ослабить ее по желанию в зависимости от поставленной задачи. [c.621]

    Сейчас совершенно ясно, что полимеризация в твердом теле может протекать по любому механизму, если для возбуждения процесса используется ионизирующее излучение — наиболее обычный прием инициирования применительно к твердому состоянию. Выбор возможного механизма в этом случае гораздо сложнее, чем при радиационной полимеризации в жидкой фазе. Одна из главных трудностей состоит в неприменимости к твердому телу таких оправдавших себя в работе с жидкой фазой методов, как изучение влияния ингибиторов или установление констант сополимеризации. Этому часто препятствует отсутствие возможности создания твердых растворов, в которых мономер и ингибитор или два разных мономера представляли бы собой однофазную систему. Ингибитор, неравномерно распределенный в твердом теле, может оказаться изолированным от кристаллических областей, в которых происходит рост цепей, и поэтому неэффективным. Подобным же образом соиолимеризация той или иной мономерной пары в твердом состоянии зависит в меньшей стеиени от механизма процесса, чем от способности к сокристаллизации. Поэтому заключения [c.453]

    Мы уже отмечали причины, ограничивающие возможность применения методов, годных для установления механизма процесса в жидкой фазе, к твердому телу. Рассмотрим это несколько детальнее. Один из наиболее обычных путей, используемых для выбора между радикальным и ионным механизмами при радиационном инициировании — изучение влияния ингибиторов радикальной полимеризации. Понятно, что в твердой фазе ингибитор способен проявить заметное действие только при значительной концентрации в противном случае встреча растущих цепей с ингибитором может оказаться практически исключенной. При твердофазной полимеризации возникает дополнительное осложнение. Представим себе поведение кристаллической системы мономер-— ингибитор в случае идеально гомогенного распределения обоих соединений. При появлении эффекта ингибирования мы с равным основанием можем приписать его как дезактивации свободных радикалов ингибитором, так и остановке процесса из-за вклинивания посторонней молекулы X в последовательность молекул мономера [c.464]

    Проблема радиационной полимеризации в твердой фазе приобрела сейчас значительный интерес как с точки зрения возможных практических приложений, так и для развития обще теоретических представлений химической кинетики. При обычном методе исследования кинетики радиационной твердофазной полимеризации выход полимера и скорость полимеризации определяются по окончании не только самого облучения, но и после сильного нагрева образца, сопровождающегося плавлением, а зачастую и фазовыми переходами. В результате полученные сведения оказываются весьма неопределенными, так как остается неясным, происходит ли полимеризация в твердой фазе (она может идти в ходе облучения или же в результате пост эффектов ) или при размораживании в области фазовых пере ходов, или в момент плавления [1—4]. Между тем для установления механизма процесса полимеризации каждого данного мономера вопрос о том, когда именно он происходит, имеет большое значение. [c.268]


    Как метод быстрого разделения ионов высоковольтный электрофорез на бумаге позволяет фиксировать изменения, происходящие в растворе. Это очень важно для изучения химии благородных металлов, трудности установления ионных состояний которых в значительной степени связаны с множеством валентных форм, тенденцией к образованию комплексов, гидролизу, полимеризации. К тому же растворы комплексов платиновых металлов, особенно хлорокомплексов, являются кинетически инертными системами, равновесия в которых устанавливаются чрезвычайно медленно. Ползгчение отчетливых электрофоретических зон дает возможность выделить в чистом состоянии даже промежуточные формы комплексов, определить скорость их образования, исследовать чистоту соединений, идентифицировать число и природу ионов в растворе, объяснить механизм реакции, а также разделить элементы. [c.281]

    В обосновании радикального механизма видное место занимают данные по сополимеризации ВХ с различными мономерами (ВА, акрилонитрил ом, стиролом), соответствующие результатам, полученным при использовании заведомо радикальных инициаторов. Строго говоря, и этот метод доказательства может быть подвергнут критике. При координационной полимеризации реакция роста включает две стадии — координацию и внедрение. Вполне возможно, что в зависимости от природы катализатора и мономеров скорость процесса будет определяться не только первой, но и второй стадией, что может привести к значениям констант сополимеризации, промежуточным между таковыми, присущими катионному и анионному механизмам [ ]. Впрочем, по мере увеличения числа примеров сополимеризации, идущей по радикальному механизму, последний представляется все более вероятным. Тем не менее существенными являются и другие подтверждения радикального механизма, в частности кинетические характеристики процесса — значения относительных констант, установление явления передачи цепи и т. п. [c.204]

    Определение этих величин как функции, например концентрации мономера и скорости инициирования, и установление связи полученных результатов с теоретическими выражениями является основой для выяснения детального механизма полимеризации. Конечная цель кинетического исследования — определение абсолютных значений констант скоростей различных индивидуальных реакций и выражение их в виде уравнения Аррениуса, что позволяет рассчитать энергии активации и предъэкспоненциальные множители и связать эти величины с химической структурой реагирующих соединений. В настоящей главе рассмотрены принципы и экспериментальные особенности различных методов определения констант скоростей индивидуальных реакций. Численные результаты рассматриваются в гл. 3, в которой подробно обсуждается кинетика полимеризации отдельных мономеров. [c.45]

    Основные научные работы посвящены изучению реакций свободных радикалов, механизма полимеризации и синтеза каучуков, установлению связи между их структурой и свойствами. Открыл и исследовал (1939) явление окислительно-восстановительного инициирования радикальных процессов, в результате чего разработал системы, способные инициировать реакции при низких температурах (до —50° С). Создал основы синтеза каучуков методом эмульсионной полимеризации. Изучал стереоспе-цифическую полимеризацию диенов и разработал (1957) технологию получения стереорегулярного бутадиенового каучука. Проводил (с 1963) исследования в области сте-реоспецифического катализа посредством индивидуальных металлоорганических соединений переходных металлов, в том числе карбеновых комплексов. [c.175]

    В 1934 г. Зелинский писал Природа и сущность тройной связи углеродных атомов в молекуле ацетилена. .. не получила пока ясного теоретического освещения [215, стр. 141]. В этих словах раскрыта главная причина, обусловившая противоречивость суждений о механизме полимеризации ацетилена. Вторая причина, логически вытекавшая из главной, заключалась в том, что оба представления — об ионизации и таутомерии ацетилена — были выведены из одних и тех же химических паб.людений, свидетельствовавших о подвижности ацетиленовых атомов водорода. В связи с этим установление механизма полимеризации (и других реакций) ацетилена зависе.ю, во-первых, от решения вопроса о природе ацетиленовой связи и, во-вторых, от выяснения характера воздействия катализатора на алкип, что могли сделать только физические методы исследования. [c.76]

    Отдельные попытки оценки констант скоростей роста при полимеризации на поверхности предпринимались и раньше. В [3, 36, 37] рассчитаны кр для радиационной прививочной полимеризации из газовой фазы акрилонитрила на капроновом волокне по методу постэффекта. В этих расчетах авторы придерживались ударного механизма полимеризации, хотя на самом деле он, по-видимому, адсорбционный. Кроме того, в изучавшейся авторами системе весьма сложно было определить истинную концентрацию инициируюших радикалов в поверхностном слое волокна. В результате авторы пришли к выводу, что значения к на поверхности близки к тем, которые наблюдаются при радикальной полимеризации АН в жидкой фазе, и в то же время получили нулевое значение энергии активации роста цепей, что для указанной реакции маловероятно и значительно отличается от значений, установленных для радикальной полимеризации АН и других мономеров в жидкой фазе. [c.70]

    Созданию промышленных методов получения поливинилхлорида в свою очередь предшествовали многочисленные поисковые и в меньшей степени теоретические исследования в области полимеризации винилхлорида. Важное место срэди них занимают исслгдования, посвященные вопросам повышения качества и интенсификации производства поливинилхлорида, а также установлению закономерностей и изучению механизма полимеризации, знание которых позволяет получать поливинилхлорид с заданными свойствами. [c.7]

    Методы электрохимии могз т быгь использованы для анализа и синтеза органических соединений, установления или подтверждения структуры, исследования природы каталитической активности, изучения промежуточных продуктов, генерирования хс-милюминесценции, исследования механизма процессов переноса электрона, изучения связи между структурой и электрохимической активностью, инициирования полимеризации, синтеза катализаторов и их компонентов, процессов деструкции, изучения биологических окислительно-восстановительных систем и т. д., а также для исследования кинетики, механизмов реакций, солевых эффектов, сольватации, влияния электрического поля на химические реакдии и в ряде других областей науки. Поэтому весьма отрадно, что нашелся целый ряд исследователей, которые решили направить свои усилия на развитие органической электрохимии [1] Объединение усилий больгиого числа специалистов сделало возможным достижение успеха одновременно на многих направлениях. Благодаря тому, что данная область химии находится иа стыке нескольких паук, большинство [c.21]

    Важным кинетическим следствием этого элементарного акта является установление экспоненциального молекулярновесового распределения вне зависимости от механизма полимеризации. Такой характер молекулярновесового распределения подтвержден экспериментально на модельной системе олигомеров, имеющих строение СНд—О—(СН2О),,—СНд. На основе процесса передачи цепи с разрывом был разработан новый общий метод синтеза блок- и привитых сополимеров. [c.47]

    Изотопный метод был применен для решения одного из основных вопросов механизма радикальной полимеризации — для установления характера участия перекисей ацилои в этом процессе. [c.547]

    Подчеркнем, что метод, основанный на действии специфических ингибиторов, является однозначной характеристикой для выбора одного из возможных ионных механизмов. С этой точки зрения отличное совпадение в случае а-метилстирола констант, установленных с помоЕцью различных методов, не оставляет сомнений по поводу катионного механизма полимеризации как основного, если не единственного, процесса в условиях проведения эксперимента. Если исходить из известных данных по константам скорости роста при свободноанионной полимеризации а-метилстирола (см. гл. II), то вклад анионной полимеризации в суммарный процесс при радиационном Инициировании окажется очень небольшим. Вернемся теперь к вопросу о порядке реакций радиационной ионной полимеризации по интенсивности облучения. При обсуждении возможных предельных случаев отмечалось (см. стр. 234), что конечный результат зависит от степени чистоты исходной системы, а также от характера образующихся побочных продуктов радиолиза, способных в определенных случаях выполнять функцию ингибитора. Достаточная концентрация агента обрыва [которая по абсолютному значению может быть весьма малой (см. рис. У1-9 и У1-11)] способна полностью исключить бимолекулярный обрыа заряженных частиц и обеспечить условие и = 1. Один из таких случаев — полимеризация а-метилстирола в присутствии триэтиламина, для которой величина п найдена равной 0,97 [15]. При концентрации агентов Ъ, недостаточной для подавления бимолекулярного обрыва, возможны сопоставимые вклады дезактивации обоих типов, что отражает уравнение  [c.243]

    Майо и Льюис [2] показали, что для одной и той же пары мономеров катализаторы, инициирующие полимеризацию по ионному механизму, дают полимеры, которые значительно отличаются по составу от полученных с помощью радикальных инициаторов. Например, из эквимолярной смеси стирола и метилметакрилата в присутствии перекисных инициаторов образуется сополимер состава 50 50, в то время как фтористый бор дает практически чистый полистирол, а анионный инициатор, натрий,— полиметилметакрилат [3]. Эти наблюдения показывают, как сополимеризация может служить одним из наиболее эффективных методов установления механизма полимеризации (см. также гл. 3). [c.460]

    Механизм обрыва цепи может быть установлен на основании данных о кинетике полимеризации. Если обрыв цепи происходит в результате соединения двух макрорадикалов, скорость полимеризации должна быть пропорциональна концентрации инициатора в степени 0,5. Такой обрыв характерен для макрорадикалов полистирола. Поэтому оба концевых звена его макромолекул при условии отсутствия реакций передачи цепи содержат осколки молекул инициатора. Методом меченых атомов установлено, что на одну макромолекулу полиметилметакрилата в среднем приходится около 1,27 осколка молекул инициатора. Это указывает на то, что рост только 42% макрорадикалов обрывается в результате рекомбинации, остальные диспропорционируют. Исключить возможность передачи цепи при полимеризации винихлорида особенно трудно, поэтому обрыв цепи путем диспропорционирования происходит настолько редко, что на каждую макромолекулу приходится от 0,19 до 0,40 осколка инициатора. Прекращение роста макрорадикалов поливинилхлорида происходит преимущественно в результате реакций передачи цепи. [c.117]

    Во-первых, должен быть установлен механизм образования связей С—С на таких обычных катализаторах, как восстановленное железо или кобальт. Трактовка механизма, как включающего полимеризацию поверхностных соединений и конкуренцию между полимеризацией и реакцией обрыва, регулирующей длину углеводородной цепочки, в какой-то мере является спекулятивной, поскольку она основана на косвенном Доказательстве. Как при метанировании, так и в синтезе Фищера — Тропша было постулировано образование частично гидрогенизиро-ванного на поверхности энола в форме радикала НСОН , а его реакции с образованием метана или конденсация с образованием углеводородной связи С—С были приняты в качестве медленной стадии. Недавние данные, однако, показывают, что наиболее медленной стадией может быть разрыв связи С—О в адсорбированном оксиде углерода. Ряд последних экспериментальных результатов подтверждает правильность этого частного механизма. Измерение кинетического изотопного эффекта показало, что на нанесенных N1, Ки и Р1 реакции Н2 + СО—>- и Оа+СО—>- протекают при идентичных скоростях, откуда следует, что водород не участвует в стадии, определяющей скорость [51]. Исследования на N1 и на N1—Си-сплавах показали, что необходимый для катализа ансамбль из смежных активных мест вызывает диссоциацию СО перед реакцией с водородом [52]. В соответствии с последними измерениями на никеле, проведенными методами ДМЭ и УФЭС, совместная адсорбция Нг и СО не приводит к образованию поверхностного энольного комплекса, поэтому может потребоваться предварительный распад СО, чтобы могло произойти гидрирование СО [53]. Эти данные согласуются с данными, полученными методом инфракрасной спектроскопии при изучении активных мест на Ки-, КЬ- и Pt-катализаторах, нанесенных на оксид алюминия, которые указывают на то, что в течение реакции Нг и СО поверхность покрыта преимущественно адсорбированным СО без каких-либо признаков существования поверхностного комплекса формила НСО— [54]. Должны быть выяснены такие важные свойства поверхности, как энергия связи СО, возможность одновременной адсорбции СО и Нг, а также необходимость придания катализаторам других структурных или электронных свойств. Они должны помочь в понимании вариаций селективности, наблюдаемых при сравнении действия различных металлов, а также вызываемых такими промоторами, как калий. [c.275]

    Конечно, такой эффект возможен независимо от того, является ли X специфическим ингибитором или произвольным инертным веществом. Насколько существенны влияния подобного рода, показывают данные Шапиро, полученные нри твердофазной полимеризации акрилопитрила. Столь различные по своей природе вещества, как бензохинон и толуол, вызывают в этом случае при равной концентрации (около 5%) примерно одинаковое замедление процесса [26]. Другой путь выяснения механизма — измерение констант сополимеризации — может привести к убедительным результатам только при условии изоморфизма обоих мономеров. Однако изоморфные пары мономеров встречаются редко (например, трибутилвинилфосфонийбромид—трибутилвинилфосфо-ниййодид [22] и акриламид—пропионамид [15]). Только недавно эту трудность удалось обойти с помощью остроумного приема — сополимеризации в твердом стеклообразном состоянии раствора двух мономеров в инертном растворителе [27]. Использование в качестве растворителя парафинового масла позволило создать гомогенный твердый раствор стирола и метилметакрилата и изучить процесс их сополимеризации при —78°. Измеренные таким способом константы сополимеризации совпали с соответствующими величинами для радикальной полимеризации в жидкости. Вполне возможно, что данный метод окажется плодотворным и для других мономерных пар. Отметим попутно, что отношения констант к 1к2, установленные в тех же условиях при гомополимеризации стирола и метилметакрилата (33.8 и 4.1 соответственно), примерно в 1000 раз меньше значений, экстраполированных к —78° из литературных данных по радикальной полимеризации жидких мономеров. Это дает представление о том, насколько резко падает скорость обрыва нри переходе от жидкой фазы к твердой. [c.465]

    При рассмотрении полимеризации этилена на хромових контактах было показано, что изучение адсорбции методом ЭПР может быть полезным для установления механизма действия катализатора, а также причин отравляющего влияния "ядов". 1Летод ЭПР, естественно, дает весьма ценную инфоршцию при исследовании адсорбции как таковой. Особенно интересные результаты в этой области получены при исследовании адсорбции кислорода на поверхности полупроводников. [c.323]

    Механизм радиационной твердофазной полимеризации не всегда надежно установлен. Однако в ряде случаев можно с уверенностью утверждать, Что он является радикальным. Например, при твердофазной полимеризации тётрафторэтилена методом ЭПР наблюдали образование фторалкильных макрорадикалов [127]. [c.93]

    В настоящее время ХПЯ обнаружена в самых разных классах реакций распад перекисей и азосоединений, термические перегруппировки и изомеризации молекул, фотохимические реакции распада, фотосенсибилизированные реакции, реакции с участием металлоорганических соединений ртути, магния, кремния, лития, свинца, олова и т. д., реакции переноса электрона, азосочетания, окисления, полимеризации, цепного галоидирования и т. д. [25]. ХПЯ дает важную информацию о механизмах, вскрывает их новые стороны. К новым результатам, полученным методом ХПЯ, относится обнаружение радикальных реакций синглетных карбепов и ориентации нуклеофильного типа в реакциях ароматического присоединения радикалов, установления ряда стабильности ацилоксиради-калов при распаде ацильных перекисей, доказательство роли диа-зофенильного радикала в ряде реакций термического распада и переноса электрона, обнаружение фотохимического распада кетонов в эксиплексах, установление радикального механизма для ряда реакций, считавшихся классическими примерами нуклеофильного или электрофильного замещения, и т. д. [c.223]

    Наличие конкурирующих реакций приводит к тому, что я определенной области температур и давлений может сосуществовать ряд реакций радикалов, приводящих к разнообразным продуктам. Такое многообразие продуктов, присущее, например, реакциям окисления, полимеризации и крекинга, делает вскрытие их дюханизма нелегкой задачей. В этих случаях изучение химизма процесса путем количественного определения всех стабильных продуктов по ходу превращения оказывается мощным методом, применение которого приводит к установлению ряда важных для вскрытия механизма реакции фактов. [c.93]

    Дальнейшим развитием исследований термодинамики, кинетики и механизма гетеролитических реакций в растворах являются работы, ведущиеся в ИХФ С. Г. Энтелисом [255—259]. Для установления количественных соотношений между скоростью реакции и свойствами среды был рассмотрен большой круг процессов с участием сильных электро-фильных реагентов в полярных средах. В реакциях хлорангидридов карбоновых кислот и изоцианатов с нуклеофильными реагентами в неводных полярных средах установлено, что влияние среды во многом определяется электростатическими воздействиями. Однако важную роль играет и специфическая сольватация. Предложены методы количественного учета последней по теплотам растворения реагентов. Был исследован механизм большого числа реакций с участием органических катионов (кислотнокаталитические реакции). Показано, что термодинамическое и кинетическое поведение ионов карбония во многом определяется координационной сольватацией за счет донорно-акцеп-торного взаимодействия между свободной орбитой карбониевого углерода и электронодонорными молекулами среды. В настоящее время развитые ранее представления о механизме и кинетике реакций в растворах применяются в новой области с целью изучения процессов катионной и ионной полимеризации и сополимеризации простых циклических эфиров. [c.56]

    Хотя в растворах олефинов в сильных кислотах карбониевые ионы были обнаружены, для окончательного установления механизма катионной полимеризации, инициированной протоном, доказательство присутствия ионов в полимеризационных системах является вопросом первостепенной важности. Впервые такое прямое определение было сделано Эвансом и Хей-маном [72] по спектрам системы 1,1-дифенилэтилен — ВРз, НзО — бензол. Система окрашена в желтый цвет с максимумом поглощения при 4300 А, что очень близко к положению поглощения 1,1-дифенилэтилкарбониевого иона. Сдвиг максимума поглощения в сторону больших длин волн по сравнению со спектром поглощения в серной кислоте характерен для карбониевых ионов в органических растворителях. Этот метод применяли также, чтобы показать наличие карбониевых ионов в системе 1,1-днметоксифенил-этилен — трихлоруксусная кислота — бензол [73]. В указанной системе вследствие стерических препятствий идет только димеризация и при достижении равновесия в смеси присутствует только 5—20% димера (в зависимости от температуры). Спектр раствора с максимумом при 4980 А по существу является спектром иона протонированного мономера. Измеренная концентрация ионов была пропорциональна концентрации кислоты в степени 2,7 + 0,2 и концентрации олефина. Точно такую же зависимость скорости превращения мономера от концентрации реагентов показали результаты кинетических исследований, и карбониевый механизм следует считать доказанным (см. также гл. 7). [c.39]

    Вещества, известные- в настоящее время как инициаторы катионной полимеризации, одними из первых были использованы для полимеризации углеводородов с несколькими двойными связями. В XIX в. Буршада и Тильден для полимеризации изопрена применяли хлористый водород. Полимеризация изопрена под действием хлористого алюминия была описана Ашаном в 1915 г. Можно найти много других ссылок на полимеризацию изопрена, бутадиена и других мономеров под действием катионных катализаторов [1]. Однако в большинстве случаев ранние работы были лишь качественными и малопригодными для установления механизма реакции. Даже теперь встречается мало исследований, на основании которых можно сделать выводы о природе инициирующих частиц или о механизме соответствующих реакций. Явная невоспроизводимость скоростей реакций, о которой сообщают, обусловлена несомненно наличием примесей в реагентах. Конечно, встречаются трудности при очистке н осушке таких активных мономеров, как бутадиен и изопрен, до требуемой высокой степени чистоты. Тем не менее при наличии современных методов, например препаративной газовой хроматографии, проблема очистки не является непреодолимой. [c.299]

    Если катионная полимеризация прекращается вследствие израсходования мономера, в смеси могут присутствовать цепи с активными концевыми группами, т. е. карбониевые или оксониевые ионы. В этом главное отличие катионной полимеризации от (в большинстве случаев) радикальной полимеризации, и в этом ее сходство с анионной полимеризацией, особенно полимеризацией типа Шварца. По этой причине стоит высказать некоторые соображения о методе дезактивирования реакционной смеси. В самом деле, как и в анионной полимеризации, указанную особенность можно использовать для присоединения характерных концевых групп к еще живым цепям. Эту благоприятную возможность, по-видимому, до сих пор не использовали, за исключением методики быстрого обрыва, в которой для установления механизма реакции применяют С2Н5ОТ, содержащий С. Анионные полимеры приобретают концевой атом трития, а катионные растущие концы становятся меченными С. [c.568]

    Механизм обрыва цепи при реакции свободнорадикальной полимеризации может быть установлен при исследовании полученного полимера по одному из методов, описанных в следуюш их разделах. [c.271]


Смотреть страницы где упоминается термин Механизм полимеризации, методы установления: [c.880]    [c.230]    [c.220]    [c.466]    [c.165]    [c.47]    [c.187]   
Основы химии полимеров (1974) -- [ c.315 , c.316 ]




ПОИСК





Смотрите так же термины и статьи:

Метод механизм

Полимеризация методы

Установление механизма

Установление механизма полимеризации



© 2025 chem21.info Реклама на сайте