Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма, определение в латуни

    Для фотометрических определений сурьмы в рудах растворяют в воде 10 г тиомочевины и 150 г иодида калия и разбавляют раствор водой в мерной колбе до 1 л. Для определения сурьмы в латунях (и в меди), а также в сплавах никеля готовят раствор 120 г иодида калия в 400 мл воды, затем 40 г гипофосфита натрия (фосфорноватисто- [c.40]


    Сурьму в бронзах и других медных сплавах определяют броматометрическим титрованием без ее отделения с погрешностью --2% [959]. В оловянных бронзах и медных сплавах, содержащих олово, ЗЬ предварительно выделяют соосаждением с Ге(ОН)з [1244]. Для определения ЗЬ в ее сплавах с медью разработан метод амперометрического титрования раствором КЕгО без ее отделения. Продолжительность титрования 5—10 мин., погрешность 2—3% [1087]. Титрованием раствором КВгОд определяют ЗЬ в медных сплавах [1346]. Гравиметрические методы, основанные на электролитическом выделении ЗЬ при контролируемом потенциале, применены для ее определения в бронзах и латунях [849, 850, 852]. Коэффициент вариации 0,1—0,2%. [c.137]

    Предложены методики определения сурьмы в хлориде калия, содержащем примесь иодидов о , в бронзах и латунях, с использованием графитового (тип I) и насыщенного каломельного электродов. [c.101]

    Определение сурьмы в бронзах и латунях . Растворяют 0,5 г сплава в 20 мл азотной кислоты (1 1) и кипятят 2—3 мин для удаления окислов азота. К раствору добавляют 10 мл соляной кислоты (1 1) и упаривают до состояния влажных солей. Упаривание с соляной кислотой повторяют 5 раз. Остаток растворяют в 1 н. соляной кислоте, 10- М по родамину С. Раствор переносят в электролизер, удаляют кислород током инертного газа. Одновременно во второй электролизер заливают 10 мл 1 н. соляной кислоты и удаляют кислоро.д также током инертного газа. [c.102]

    Определение меди, свинца, олова и сурьмы электролизом с контролем потенциала. II-. Применение метода к определению меди, свинца, олова и сурьмы в бронзах и латунях. [c.195]

    Кузнецов В. И. Быстрое определение сурьмы в бронзе и латуни. Цветные металлы 20, № 2, ф (1947). [c.546]

    При содержании 0,002% Аз в латуни было найдено 0,002> 0,0016, 0,0015 и 0,0015% Аз. Сурьма, свинец и другие компоненты латуней не мешают определению мышьяка. [c.65]

    Реакция сурьмы с родамином В была применена для определения сурьмы в бронзах и латунях непосредственно [5], а также после отгонки ее в виде хлорида [6]. [c.208]

    Используя такую же методику выделения сурьмы и висмута, Е. Я. Нейман и сотр. [41] применили для анализа меди высокой чистоты метод инверсионной вольтамперометрии металлов. На ртутно-графитовом электроде авторы добились чувствительности 5-10 % при относительной ошибке около 15%. При определении кадмия в высокочистой меди [38] чувствительность метода ИВМ с применением ртутно-графитового электрода составила 5-10 % при относительной ошибке 20%-Р. Г. Пац и Л. Н. Васильева [39] применяли экстракционное отделение микроколичеств таллия от меди при последующем определении таллия на полярографе переменного тока методом АПН. X. 3. Брайнина и Э. Я. Сапожникова [42] предложили метод определения микроколичеств сурьмы в сернокислой меди, используя реакцию образования нерастворимого хлорстибата родамина С на поверхности графитового электрода. X. 3. Брайнина и сотр. [43] применили этот же метод для определения примеси сурьмы в латунях и бронзах. [c.137]


    Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25°С О = 1,3-10" см с) [17], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцинкованных слоев Б-латуни (сплав 2п—Си с 86 ат. % 2п) и -у-латуни (сплав 2п—Си с 65 ат. % 2п) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным. [c.334]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Выполнение определения. Навеску сплава (латунь, бронза и др.) 0,2—0,3 г, взвешенную с точностью до 0,0002 г, помеш ают в стакан емкостью 300мл, вливают 5— Омл воды и столько жг концент-рированной азотной кислоты, накрывают часовым стеклом и по окончании бурной реакции нагревают до полного растворения пробы. Затем снимают часовое стекло со стакана, обмывают его дистиллированной водой, собирая промывные воды в стакан. Если анализируемый материал содержит сурьму и олово, то они выпадут в осадок в виде метасурьмя-ной и метаоловянной кислот. В этом случае прибавляют 15 мл 10%-ного раствора нитрата аммония, нагревают до начала кипения для коагулирования осадка, дают раствору отстояться 30 мин при 80—90° и горячий раствор отфильтровывают через плотный фильтр с бумажной массой, собирая фильтрат в чистый стакан емкостью 200 мл. Осадок на фильтре промывают несколько раз горячей разбавленной азотной кислотой (1 100), собирая промывные воды в тот же стакан. [c.373]

    В качестве люминесцентного реактива для открытия таллия Фейгль, Гентиль и Гольдштейн [107] применили родамин С, образующий с трехвалентным таллием соединение, флуоресцирующее в бензольном растворе оранжево-красным светом. Примеси сурьмы, золота и ртути удаляются путем вытеснения из раствора (восстановления) медной или латунной проволокой, на которой опи отлагаются в виде металла. Метод позволяет обнаруживать 0,1 у таллия в присутствии 500 у золота, ртути и сурьмы. Применяя соосаждепие таллия коллектором — двуокисью марганца, удается обнаруживать 0,1 у таллия в 500 мл воды, что соответствует его определению при разбавлении 1 5 ООО ООО ООО. [c.175]


    Кузнецов В. И. Способ количестветпюго определения олова в бронзах и о.товяпнстых латунях. Описание изобретения к авт. свидетельству Л Ь 67355 (1946). Свод изобретений Союза ССР. 1946 г. М., Госпланиздат, 1948, вын. 10. 4489 Кузнецов В. И. Цветная реакция на сурьму с метилвиолетом. Бюлл. Всес, [ .-и. ин-та минерального сырья. (М-лы научно-методические и производ. лабор. геол. управлений. Ком-т по делам геологии при СНК СССР), 1946,, № 8 (44), с. 14 -48. Библ.  [c.177]

    ВНУТРЕННИЙ ЭЛЕКТРОЛИЗ — вьщеление металлов из р-ров в результате процесса, происходящего внутри гальванич. элемента нрименяетоя в аналитич. химии как метод отделения металла от других химич. элементов с целью колич, его определения. Для В. э. применяются разнообразные приборы, в конструкции к-рых всегда входят 2 различных металла, соединен-ныхдругс другом маленькой муфтой и,пи проволокой, охватывающей оба металла. При погружении такой гальванич. нары в раствор возникает необходимая разность потенциалов. На менее активном из двух металлов (катоде) происходит процесс восстановления с выделением из раствора определяемого металла электрод, сделанный из более активного металла (анод), окисляясь, переходит в раствор. Катодом чаще всего служит платиновая сетка иногда для этой же цели применяют латунную сетку, железную проволоку (при выделении сурьмы) и т. п. Анодом служит пластинка или цилиндр из 2п, А1, РЬ и др. Применяя аноды из разных металлов, можно производить отделение определяемого элемента от различных мешающих примесей. [c.301]

    Установлено, что азотная и серная кислоты при концентрации до 25 /о (по объему), а также литий, натрий, калий, кальций, барий, стронций, медь, кадмий, свинец, хром, марганец, железо, серебро, титан, цирконий, фосфор, мышьяк, бор, алюминий, висмут, кобальт, никель, сурьма, торий и олово при концентрации по 1000 мкг/мл каждого определению не мешают. Несколько заниженные результаты получаются в присутствии магния и кремния (найдено соответственно 4,75 мкг/мл и 2,85 мкг/мл цинка вместо 5 мкг/мл). Значительный мешающий эффект был обнаружен первоначально со стороны галоидных кислот. Оптическая плотность при 2139 А 2,5 н. раствора соляной кислоты, содержащей цинк в концентрации 7,5 мкг/мл, равнялась 0,52 вместо 0,30 для водного раствора при той же концентрации цинка. С уменьшением концентрации кислоты оптическая плотность раствора приближалась к 0,30 (в растворе 0,1 н. соляной кислоты оптическая плотность равна 0,28). Объясняя полученный результат, авторы предположили наличие в области 2100—2200 А молекулярных абсорбционных полос соляной, бромистоводородной и йодистоводородной кислот, ранее не идентифицированных и в связи с этим рекомендовали определение цинка проводить в отсутствии галоидных кислот. С этим объяснением не согласился автор работы [8]. По его данным, галоидные кислоты при использовании горелки из нержавеющей стали определению цинка не мешают. В связи с этим он высказал предположение, что поглощение в области 2000—2200 А вызвано поступлением в пламя загрязнений. В последующих исследованиях это предположение подтвердилось [9] было показано, что при использовании латунной горелки ее поверхностный окисный слой разрушается соляной кислотой и вносится в пламя вместе с распылохм анализируемого раствора. Этим объясняется поглощение в пламени растворов галоидных кислот как при длине волны Zn 2139 А, так и при длинах волн 2024,. 2165, 2178 и 2182 А. При указанных длинах волн [81] расположены сильные абсорбционные линии меди. [c.149]


Смотреть страницы где упоминается термин Сурьма, определение в латуни: [c.137]    [c.223]   
Колориметрический анализ (1951) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Латуни



© 2025 chem21.info Реклама на сайте