Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вечный двигатель I рода

    Существует также другая формулировка принципа эквивалентности невозможно построить машину, которая производила бы механическую работу, не затрачивая при этом эквивалентного количества теплоты (принцип невозможности вечного двигателя первого рода). [c.17]

    Формулировка, использованная Томсоном и позднее Планком, гласит невозможно построить периодически действующую машину, которая бы только охлаждала тепловой резервуар и производила механическую работу (принцип невозможности вечного двигателя второго рода). [c.19]


    Этот закон отрицает возможность построить такую машину, которая производила бы механическую работу, не затрачивая эквивалентное количество энергии в форме теплоты (принцип невозможности построения вечного двигателя 1-го рода), Джоуль экспериментально доказал, что всякий раз, когда затрачивается 427 кгм работы, выделяется 4,184 кДж теплоты, то есть существует строго эквивалентное соотношение между теплотой и работой. [c.15]

    Принцип недостижимости абсолютного нуля. Важнейшим следствием третьего начала термодинамики является недостижимость абсолютного нуля. Принцип недостижимости абсолютного нуля был сформулирован Нернстом в 1912 г. Попытаемся воспроизвести ход рассуждений Нернста. Проведем цикл Карно в интервале между, скажем, комнатной и более низкой температурой. При этих условиях можно получить некоторое количество работы, но так как для нашей цели необходимо отбирать теплоту от источника теплоты с более низкой температурой, то цикл непригоден для производства работы. Однако если мы можем достигнуть абсолютного нуля и использовать его как наинизшую температуру цикла, то тогда согласно второму началу источник теплоты с этой температурой совсем не получит теплоты. Мы имеем, таким образом, систему, которая получает теплоту при более высокой температуре и превращает все количество теплоты в работу. Но тогда подобная машина окажется вечным двигателем второго рода. Чтобы избежать этого следствия, Нернст постулировал невозможность достижения абсолютного нуля. Нернст полагал, что доказал эту теорему на основании исчезновения теплоемкостей при абсолютном нуле и второго начала. [c.189]

    Почему невозможно создать вечный двигатель 1-го рода  [c.15]

    М. Планк определил, что невозможно построить периодически действующую машину, которая производила бы только поднятие груза и охлаждение источника теплоты . Эти формулировки исключают возможность создания вечного двигателя П-го рода (Во. Оствальд), который мог бы превращать теплоту в работу без разности температур. Если бы возможно было создать такой двигатель, который мог бы отбирать теплоту от воды океанов и работая при температуре океана, производить полезную работу, то использование этой энергии в течение 150 лет всеми тепловыми машинами и тепловыми электростанциями могло бы снизить температуру океана менее, чем на [c.87]

    Вечный двигатель первого рода невозможен, т. е. невозможна такая периодически действующая машина, которая давала бы работу в количестве большем, чем количество сообщенной извне энергии. [c.60]


    V Первое начало можно выразить и в такой форме вечный двигатель первого рода невозможен, т, е, невозможно построить мащину, которая давала бы механическую работу, не затрачивая на это соответствующего количества молекулярной энергии или внутренняя энергия является функцией состояния, т. е. ее изменение не зависит от пути процесса, а зависит только от начального и конечного состояния системы, [c.86]

    Никакая совокупность процессов не может сводиться только к превращению теплоты в работу, тогда как превращение работы в теплоту может быть единственным результатом процессов (Томсон) Невозможно создание вечного двигателя второго рода (Оствальд) Под вечным двигателем второго рода подразумевается такая маши на, которая производила бы работу только за счет поглощения теп лоты из окружающей среды (без передачи части теплоты холодиль нику). При работе такой машины закон сохранения энергии не на рушается. [c.109]

    О—10). Но, согласно равенству (1.1), работа, произведенная системой (машиной) за цикл, равна теплоте, которую система получила от окружающей среды в том же цикле. Для вечного двигателя первого рода эта теплота = О, следовательно, и работа цикла тоже будет равна нулю. Именно невозможность получения работы без затраты других форм энергии и является основным содержанием этой формулировки первого закона. [c.29]

    Первый закон термодинамики, строго установленный Мейером (называемый в физике также законом сохранения энергии), утверждает, что энергия не исчезает и не создается, а переходит из одной формы в другую, другими словами, невозможно создать вечный двигатель первого рода . Воспользовавшись представлениями, развитыми в гл. 18 о функциях состояния [уравнения (174) и (180)], можно сформулировать первый закон термодинамики следующим образом внутренняя энергия системы есть функция состояния. Если бы внутренняя энергия не была функцией состояния, то при ее изменении в круговом процессе можно было бы получить дополнительное количество энергии, т. е. создать вечный двигатель первого рода , что противоречит первому закону термодинамики (одному из основных законов природы). [c.217]

    Вечный двигатель первого рода невозможен, так как невозможно создать такую машину, которая производила бы работу без подведения энергии извне. [c.52]

    Следует отметить, что широко распространенная формулировка первого начала о невозможности осуществления вечного двигателя (перпетуум мобиле первого рода невозможен) является значительно более узкой по сравнению с принципом эквивалентности, поскольку из этой формулировки и вообще из самого принципа исключенного вечного двигателя принцип эквивалентности не вытекает. [c.36]

    Невозможно построить вечный двигатель второго рода. [c.75]

    Заключение о недостижимости абсолютного нуля привело Нернста к окончательной формулировке третьего начала термодинамики никаким конечным процессом нельзя охладить тело до абсолютного нуля. Отсюда и вывод о невозможности перпетуум мобиле III рода, т. е. вечного двигателя с температурой холодильника, равной нулю. [c.190]

    Невозможен вечный двигатель второго рода, т. е. невозможна такая периодически действуюш,ая машина, которая позволяла бы получать работу только за счет охлаждения источника теплоты. [c.81]

    Невозможно пос-проить вечный двигатель второго рода . [c.44]

    Доказательством того, что внутренняя энергия является функцией состояния, может быть следующий пример. Допустим, что внутренняя энергия не является функцией состояния, а ее величина зависит от пути процесса. Тогда система в начальном состоянии с / ач приходит в конечное состояние с Укон, а при возвращении в начальное состояние другим путем имеет и а . Разность — свидетельствует о том, что изменяя состояние системы от р У до и обратно можно получить выигрыш в энергии, который можно обратить в полезную работу, т. е. создать вечный двигатель первого рода, а это противоречит первому закону термодинамики (см. 1.8). [c.18]

    Если бы энергия изолированной системы могла увеличиваться без взаимодействия с окружающей средой, то можно было бы сконструировать вечный двигатель первого рода, под которым подразумевается машина, производящая работу без затраты энергии. Однако, согласно второй формулировке первого закона, [c.22]

    Под вечным двигателем второго рода подразумевают тепловую машину, превращающую всю теплоту в работу, т. е. без передачи части ее холодильнику. [c.36]

    Движение, являющееся формой существования материи, не может ни исчезать, ни возникать из ничего — оно лишь переходит из одной формы в другую. Поэтому в изолированной системе суммарная энергия, отвечающая всем видам движения, которая может быть охарактеризована общей работоспособностью системы, является величиной постоянной. Это положение равносильно утверждению о невозможности создания двигателя, который бы производил работу, не используя каких-либо источников энергии (вечный двигатель первого рода). [c.11]


    В рамках первого закона термодинам 1ки возможно составление энергетических балансов термических процессов, но не рассматривается вопрос о направлении, в котором они могут происходить. В некоторых случаях, однако, этот закон позволяет предвидеть невозможность тех или иных процессов. Например, температура изолированного тела не может сама по себе увеличиться, Невозможность вечного двигателя первого рода, т. е. машины, производящей работу без энергетических затрат, также является примером процессов, запрещаемых первым законом. [c.27]

    Известны различные формулировки второго закона термодинамики. В качестве аксиомы может быть принята невозможность самопроизвольного перехода тепла от менее нагретого тела к более нагретому. В наиболее принятой системе изложения термодинамики второй закон формулируется как утверждение невозможности создания вечного двигателя второго рода, т. е. машины, которая периодически превращает тепло среды при постоянной температуре в работу. В этом определении важно подчеркнуть требование периодичности действия такой машины, так как вполне возможно однократное превращение тепла в работу при постоянной температуре, как это может быть, например, при изотермическом расширении идеального газа. Однако для того, чтобы машина действовала периодически, необходимо вновь сжать расширившийся газ и затратить на это полученную работу. [c.29]

    Невозможность осуществления указанного цикла построения вечного двигателя перпетуум мобиле) 1-го рода, дающего работу без затраты эквивалентного количества другого вида энергии, доказана отрицательным результатом тысячелетнего опыта человечества. Этот результат приводит к тому же выводу, который в частной, но более строгой форме мы получ1 ли, анализируя опыты Джоуля. [c.31]

    Из этого отнюдь не следует, что катализатор может вызвать термодинамически невозможный процесс. Поскольку катализатор Е1Х0ДИТ в состав лишь промежуточного соединения, термодинамическая возможность процесса определяется разностью уровней свободной энергии конечного и начального состояний. Таким образом, химический процесс и в присутствии катализатора идет в направлении минимума свободной энергии в системе, а катализатор лишь ускоряет (или замедляет) этот процесс, т. е. не способен смещать положения равновесия. Это же заключение можно сделать и на оснонании рассмотрения следующей модели представим себе изотермическую систему, состоящую из газообразных компонентов, в которой термодинамически аошожна реакция с изменением числа молей. Предположим, что существует катализатор, смещающий положение равновесия. Тогда, попеременно вводя в систему и выводя из нее катализатор, можно будет при отсутствии разности температур неограниченно получать работу расширения и сжатия газов. Следовательно, сделанное предположение о возможности смещения равновесия в присутствии катализатора приводит к возможности построения вечного двигателя второго рода, т. е. к нарушению второго закона термодинамики. [c.273]

    Следует отметить, что если тепловая машина находится между нагревателем и холодильником с одной и той же температурой, то такая машина не может быть источником работы. Невозможно построить вечный двигатель 2-го рода, то есть двигатель, который мог бы работать без разности температур. Поэтому при постоянной температуре в системе теплота может служить только источником энтропии, а энтропия, в свою очередь, определяет ту энергию, которая при Г=соп51 может переходить только в теплоту, а теплота при этих условиях может только рассеиваться в окружающую среду. Количество этой теплоты будет равно  [c.94]

    Из закона сохранения энергии вытекаег еще одна формулировка первого закона термодинамики —невозможность создания вечного двигателя (perpetuum mobile) первого рода, который производил бы работу, не затрачивая на это энергии. В раскрытии первого закона термодинамики как фундаментального закона природы сыграли большую роль работы Гесса (1840), Майера (1842), Джоуля (1847), Гельмгольца ( 847) и др. В частности, Джоуль обосновал первый закон термодинамики, исходя из опытов превращения механической энергии в теплоту. [c.191]

    Так как в радикально-цепном крекинге происходит обрыв цепей на стенках вообще, то вопрос о гетерогенном зарождении цепей в термическом крекинге приобретает принципиальное значение. Опираясь на положение о том, что некаталитические стенки не могут изменять состояние равновесия системы (так как в противном сл д1ае можно было бы осуществить вечный двигатель второго рода), было показано (98] что с процессом обрыва цепей на стенках непременно сопряжен процесс гетерогенного зарождения цепей на поверхности одновременно с рекомбинацией радикалов проис ходит и обратная реакция гетерогенной диссоциации продукта рекомбинации на радикалы. Таким образом, гетерогенное зарождение цепей и гетерогенный обрыв цепей тесно связаны, вопреки прежним представлениям о независимости этих процессов. Гетерогенное зарождение цепей было экспериментально доказано в ряде работ [99—102]. [c.47]

    Тепловая машина способствовала возникновению и сомнительных идей. Так, в новой форме возродилась идея создания вечного двигателя (perpetuum mobile), основанная на использовании тепловой энергии окружающей среды (вод океана, атмосферы и недр земли) в целях производства механической работы. Энергия вышеперечисленных тел огромна, так что подобный двигатель, не противореча закону сохранения энергии, должен действовать практически бесконечно долго, поскольку использует он бесконечно большую энергию природы и не вызывает при этом никаких возмущений в ней. Подобный двигатель назван вечным двигателем второго рода. [c.88]

    В основе термодинамики лежат три обобщения, или принципа первый принцип термодинамики является законом сохранения энергии второй ее принцип характеризует направление всех естественных, самопроизвольно протекающих процессов менее общий третий принцип позволяет определить абсолютное значение одного из фундаментальных свойств вещества — его энтропии (см. 11.3). Эти принципы, или законы, являющиеся обобщением огромного опытного материала, могут быть выражены по-разному часто их формулируют в виде утверждения о невозможности осуществления Perpetuum mobile — вечного двигателя первого рода, в котором производимая машиной работа превышала бы количество подведенной теплоты вечного двигателя второго рода, в котором работа производилась бы за счет одного источника теплоты, и вечного двигателя третьего рода, в котором работа производилась бы за счет охлаждения источника энергии до абсолютного нуля температуры. [c.78]


Смотреть страницы где упоминается термин Вечный двигатель I рода: [c.80]    [c.188]    [c.188]    [c.188]    [c.212]    [c.216]    [c.219]    [c.19]    [c.19]    [c.29]    [c.69]    [c.65]    [c.90]    [c.219]    [c.22]    [c.35]    [c.28]   
Физическая химия Том 2 (1936) -- [ c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Вечный двигатель



© 2025 chem21.info Реклама на сайте