Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Остаточных газов вакуумных систем ионных насосах

    Большинство металлов, за исключением меди, требуют более жесткого теплового воздействия для удаления газа, который может выделяться во время проведения эксперимента. С нагретого вольфрамового катода удаляется газ по объему (измеренному при атмосферном давлении), в 10 раг превышающему объем катода 1556] большая часть этого газа представлена окисью углерода и водородом. Эти же вещества в большом количестве выделяются при нагревании никеля и стали выше 1000°. Если такие металлы будут обезгаживаться при нагревании лишь до температуры, применяемой для стеклянных частей прибора, то из них будут выделяться указанные выше газы при бомбардировке электронным или ионным пучком, хотя эта бомбардировка не приводит к сильному повышению температуры. Особенно много затруднений связано с выделением газа в ионизационной камере оно также имеет место в ионизационных вакуумных манометрах хорошо известно, что остаточный пик, соответствующий массе 28 (в основном СО" ), может быть уменьшен при выключении этих манометров. Пучок положительно заряженных ионов в масс-спектрометре может также вызвать обезгаживание поверхностей. Действительно, при использовании системы, отключенной от насосов (как это имеет место при анализе остаточных газов в вакуумной системе), ускоряющее напряжение должно включаться лишь на время проведения измерений, чтобы тем самым снизить количество газа, выделяемое действием пучка [1689]. [c.146]


    Наиболее чувствительный индикаторный газ для применения в масс-спектрометре— гелий, однако очень часто применяют также водород [1679], хотя его использование ограничено фоновыми пиками в приборе. Во многих общих работах указано, что достаточная чувствительность обеспечивалась применением таких газов, как аргон. В качестве индикаторного материала используют и двуокись углерода (несмотря на то, что в спектре фона обычно присутствует значительный пик ионов с массой 44). Атмосфера двуокиси углерода создается внесением измельченной твердой углекислоты под колпак. Можно легко смонтировать небольшое портативное индикаторное устройство, присоединив узкий стеклянный отвод через резиновую трубку к пробирке с индикатором. Остаточный газ в вакуумной системе может находиться в динамическом равновесии, обусловленном натеканием и откачкой. В этом случае допускается, что откачка не происходит селективно, а основные компоненты в спектре фона соответствуют азоту и кислороду. Плохой вакуум в системе может быть обусловлен десорбцией веществ со стенок, диффузией газа из объема вакуумной системы или обратной диффузией насосов. В первых двух случаях состав газа вряд ли близок к составу воздуха, и пики, отвечаю- [c.494]

    Для выполнения второго требования — создания возможно меньшего фона прибора — необходима специальная конструкция вакуумной камеры. Остаточный газ состоит в этом случае не только из газов, образованных в диффузионном насосе, и газов, выделяющихся со стенок прибора. В него входят также те молекулы, которые поступили через напускное отверстие, но по крайней мере один раз ударились о поверхность. Поскольку эти частицы могут реагировать с веществом поверхности, они не отражают состава реакционной смеси. Для лучшей откачки прибора применена большая ловушка перед диффузионным насосом, работающая на обычном охладителе, например жидком азоте, а также производится прогрев вакуумной системы. Новая вакуумная камера сконструирована таким образом, чтобы большая часть радикалов, прошедших через напускное отверстие, не возвращалась в ионный источник. Для этого позади ионного источника установлена большая емкость, применяется мощный диффузионный насос, приняты меры к тому, чтобы коллектора достигали лишь ионы, образованные электронным пучком в области напротив напускного отверстия. [c.257]

    И наконец, при изучении масс-спектра необходимо учитывать наличие углеводородов, поскольку последние могут содержаться непосредственно в образце или быть следствием недостаточных очистки образца и откачки вакуумной системы прибора. Даже в предварительно прогретой камере после откачки ионным и диффузионным насосами с азотной ловушкой и обработки ионами аргона автор данной главы наблюдал углеводороды при экспозициях выше 100 нК. Спектр углеводородов или спектр остаточных газов обычно состоит из всех масс, равных 2n- -m, где 5 п 1, а 2n + 2 m 0. Кроме этих линий, присутствуют [c.193]


    В составе остаточных газов ионно-геттерных насосов (рис. 7.38), помимо обычно присутствующих в вакуумных системах водорода (массовые числа 2 и 1), паров воды (массовые числа 18 и 17), а также азота и окиси углерода (массовое число 28), наблюдаются аргон (массовое число 40) и метан (массовые числа 16 и 15). [c.144]

    Остаточные газы, обнаруживаемые в ионно-испарительных системах, обусловлены главным образом процессами обезгаживания стенок камеры. В непрогреваемых вакуумных системах, откачиваемых такими насосами, предельное давление составляет 10 — 10 мм рт. ст. [115]. За исключением отсутствия высоких углеводородов спектр остаточных газов в этом случае аналогичен спектру для систем с откачкой диффузионным насосом. При этом в состав атмосферы остаточных газов входят преимущественно пары воды, а также N2, СО, Аг, СН4, На [16, 145]. В прогреваемых вакуумных системах с ионной откачкой, пригодных для получения вакуума 3-10 мм рт. ст., в состав остаточных газов входит прежде всего водород с менее значительными добавками СО, Н2О и СН4 [123]. Газы, захваченные насосом ранее, не выделяются в сколь-нибудь заметных количествах, поскольку энергии ионов в испарительных насосах недостаточно великн для того, чтобы вызвать сильные эффекты памяти . Присутствие низших углеводородов, таких как СН или С2Н6, обусловлено реакцией на поверхности между водородом и углеродом, содержащимся в качестве примесей в стенках насоса [146]. [c.215]

    Как правило, масс-спектрометр работает при непрерывной откачке и постоянном натекании газа в прибор. В качестве примера рассмотрим вакуумную систему масс-спектрометра МХ-1303 (рис. 11). Высокий вакуум создается диффузионными парортутными насосами типа ДРН-10 производительностью 7—10 л1сек. Остаточное давление, достигаемое этими насосами при использовании ловушек с жидким азотом, составляет около 2-10 мм рт. ст. Один диффузионный насос используется для откачки источника ионов и прилегающей к нему части камеры анализатора. Остальная часть камеры анализатора и приемник ионов откачиваются другим диффузионным насосом. Дифференциальная система откачки позволяет значительно повысить давление анализируемого газа в источнике ионов, не повышая давления в камере анализатора, что увеличивает чувствительность масс-спектрометра без ухудигения его разрешающей способности. [c.35]

    Измерения показали, что один регистрируемый за период колебания ион аргона соответствует парциальному давлению аргона 1 10" ммрт. ст. в области ионизации (или 10 ООО ионов в секунду). Уровень шумов электронного умножителя, измеренный в интервале масс, равном единице, составляет около одного импульса, равного по величине импульсу, создаваемому одним ионом, за 10 колебаний, что соответствует парциальному давлению в ионном источнике 1 -10 мм рт. ст. Абсолютная чувствительность, однако, ограничена в действительности не шумами, а составом и количеством остаточного газа в вакуумной системе. Специально не предпринималось никаких мер для достижения максимального вакуума путем длительного прогрева, хотя конструкция прибора позволяет осуществить тако11 прогрев. Мы считали вполне достаточным ограничиться давлением около 1-10 ммрт. ст. Ртутный насос с эффективной ловушкой дает очень низкое парциальное давление газов почти во всей области масс-спектра. [c.255]

    Ионно-распылительные насосы. Ионно-распылительные насосы берут начало от ионизационных манометров Пеннинга. Их функциональными элементами являются ячейки с цилиндрическим анодом, заключенным между двумя катодами (рис. 30). Эта система помещена в магнитное поле. Катоды имеют постоянный отрицательный потенциал относительно анода в несколько киловольт. Электроны, эмиттированные с поверхности катода, ускоряются электрическим полем в направлении к аноду. Магнитное поле сообщает электрону радиальную компоненту скорости и заставляет электроны двигаться по спиральным траекториям. Из-за большой длины свободного пробега электронов эффективность ионизации высока и позволяет поддерживать газовый разряд вплоть до давлений ультра-пысоковакуумного диапазона. Положительно заряженные ионы газа устремляются к катоду, где некоторая часть из них захватывается поверхностью. Поскольку ионы падают с энергиями до нескольких кэВ, они вызывают также и распыление материала катода. Распыляемый металл распространяется внутри ячейки и конденсируется на всех ее поверхностях, включая катоды. Таким образом откачка идет одновременно как за счет химического захвата молекул остаточных газов, так и за счет процессов, обусловленных наличием электрических полей. При этом хемисорбционнын захват имеет место преимущественно на внутренних поверхностях цилиндрического анода, а электронная откачка в основном происходит на катодах Используя для исследования радиоактивный криптон, Лаферти и Вандерслайс [147] показали, что геттерирование ионов происходит главным образом на периферии катода, расположенной против анодных стенок, тогда как середина катода служит источником распыляемого металла. Такая неравномерность существенна для функционирования ионного распылительного насоса, поскольку при однородном распределении ионного тока процесс непрерывного замуровывания частиц инертного газа был бы невозможен. Производительность простой разрядной ячейки Пен нинга слишком мала для откачки реальных вакуумных систем. Сущест венным шагом вперед явился ионно-распылительный насос Холла, имеющий значительно большую быстроту откачки [148]. Это достигается использованием многоячеечного анода, расположенного между двумя катодными платами (рис. 31). Эффективность многоячеечной структуры обусловлена тем фактом, что максимальный заряд, заключенный в полом [c.215]


    Использование геттеро-ионного насоса вместо диффузионного не приводит к заметному изменению рабочих характеристик разборных вакуумных систем. Так, Касуэллу [79] с помощью ионно-распылительного насоса и ловушки Мейснера удалось снизить предельный вакуум всего лишь до 2 10 мм рт. ст. Получившийся в результате состав атмосферы остаточных газов был таким же, что и в случае использования диффузионного насоса. Мейнард [291] для откачки прогреваемой до 100 С внутренними нагревателями разборной системы применил ионно-испарн-тельный насос. Ему удалось достигнуть разрежения около 3 10 мм рт. ст., причем основными газами в остаточной атмосфере были СО, Nj. Аг, На, СН4 и HjO в соотношении, зависящем от рабочих условий. Некоторым преимуществом системы этого типа является отсутствие других, кроме метана, углеводородов. Однако при наличии в системе тлеющего разряда или электронного луча даже небольшой обратный поток паров масла из диффузионного насоса может приводить к постепенному накапливанию пленок твердого полимера или сажи. [c.297]


Смотреть страницы где упоминается термин Остаточных газов вакуумных систем ионных насосах : [c.16]    [c.150]   
Технология тонких пленок Часть 1 (1977) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы газах

Насос системы

Остаточных газов

Остаточных газов вакуумных систем

Ток остаточный



© 2025 chem21.info Реклама на сайте