Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изучение химических реакций в масс-спектрометре

    Изучение химических реакций в масс-спектрометре [c.141]

    Если какой-либо элемент необычного изотопного состава использовать при синтезе некоторого соединения, а затем применить последнее для изучения химической реакции или ввести его в организм животного, то по изотопному составу этого же элемента в продуктах реакции или в организме животного можно судить о тех превращениях, которые он претерпел в течение исследуемых процессов. Для определения изотопного состава можно использовать с успехом масс-спектрометр, конечно, при применении в каждом случае подходящего способа изготовления образцов для анализа. С помощью этого прибора получаются надежные результаты. [c.92]


    Химические реакции в предпламенной зоне. Химические реакции в пламени и предпламенной зоне протекают с очень большой скоростью, что крайне затрудняет их изучение. О характере химических реакций можно судить путем идентифицирования стабильных продуктов, образующихся в результате этих реакций. Для таких исследований были разработаны техника зондирования пламени пробоотборниками, а также техника бесконтактного оптического зондирования пламен. Анализ проб проводили с использованием современных высокочувствительных физических методов — масс-спектрометрии, хроматографии, лазерного магнитного резонанса и др. Таким образом была получена достаточно надежная информация о химических реакциях, протекающих в предпламенной зоне и в пламени. [c.120]

    Масс-спектрометрия является инструментальным методом изучения органических соединений. С помощью этого метода устанавливают молекулярную массу органического вещества и строение его молекул, определяют его элементный состав. Как аналитический метод масс-спектрометрия обладает исключительно высокой чувствительностью и позволяет обнаруживать следовые количества органического вещества в больших объемах газов и жидкостей, а также в биологических системах. С помощью масс-спектрометрии можно изучать превращения вещества в процессе химической реакции, что существенно для установления механизмов реакций. Этот метод может использоваться и для изучения микроструктуры макромолекул, определения состава и структуры поверхностей полимерных материалов. В настоящее время масс-спектрометрия эффективно применяется в различных областях науки и техники, например в органической и элементоорганической химии, химии природных соединений, аналитической и физической химии, нефтехимии, биохимии, фармакологии, экологии. [c.3]

    Можно ли использовать метод реакционной хромато-масс-спектрометрии для изучения протекания химических реакций Какая конфигурация реакционной системы при этом предпочтительна  [c.198]

    Изучение зависимостей концентрации вещества в газовой фазе от времени (по изменению интенсивностей линий масс-спектра) дает возможность с помощью масс-спектрометра исследовать разнообразные кинетические явления, возникающие при взаимодействии газ — поверхность твердого тела, а именно кинетику адсорбционных и десорбционных процессов, кинетику химических реакций, кинетику изотопного обмена, кинетику диффузионных процессов. Знание таких кинетических закономерностей позволяет оценивать среднее время жизни адсорбированных молекул на поверхности, характер пористости твердых тел и другие величины. [c.48]


    Теоретические вопросы органической химии. Изучение механизма органических реакций с помощью меченых соединений требует знания природы и конфигурации промежуточных частиц. Только имея данные по относительной стабильности карбониевых ионов, можно создать количественную теорию реакций замещения. Не менее эффективно применение масс-спектрометрии для изучения поведения свободных радикалов в химических реакциях. [c.142]

    Для выяснения сольватационных эффектов необходимо иметь сведения об изучаемом процессе и в данном растворителе, и в газовой фазе. В течение длительного времени химики были лишены такой возможности и лишь за последние два десятилетия положение изменилось благодаря разработке методов изучения газофазных ионно-молекулярных реакций спектрометрии ион-циклотронного резонанса, масс-спектрометрий высокого давления, масс-спектрометрии с химической ионизацией и др. [224, 225], позволяющих изучать как равновесие, так и кй-нетику процессов. [c.75]

    В повседневной практике химика-органика несравненно большее значение имеют спектроскопические методы, и здесь на первое место выдвинулся (открыт в 1946 г.) метод ядерного магнитного резонанса (ЯМР), основанный на взаимодействии магнитных моментов ядер (например, ядра водорода) с внешним магнитным полем. Метод протонного магнитного резонанса дает исчерпывающие сведения о химической природе, пространственном положении и числе атомов водорода в молекуле и тем самым о ее строении. Методы инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, обусловлен взаимодействием неспаренного электрона парамагнитного соединения со внешним магнитным полем. Масс-спектроскопия (спектрометрия) путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов устанавливает конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). [c.10]

    Исследование радиационной химии ароматических углеводородов совпадает, с одной стороны, с появлением чувствительных и богатых информацией аналитических методов, например газовой хроматографии, масс-спектрометрии, ЭПР и кинетической спектроскопии, и, с другой — с лучшим пониманием механизмов гемолитических реакций и реакций передачи энергии. Возможности анализировать продукты реакции с достаточной точностью, даже если реакция прошла на незначительную глубину, и сравнивать результаты с данными, относящимися к реакциям с изученной кинетикой, характеризуют прогресс в этой области за последние годы. Действие излучения высокой энергии вызывает, однако, большое разнообразие физических и химических процессов, пока еще трудно объяснимых. Поэтому необходимо периодически повторять обзоры большого числа экспериментальных результатов. [c.68]

    Значительная роль принадлежит масс-спектрометрии в изучении кинетики и механизмов химических реакций, особенно элементарных химических актов, в том числе ион-молекулярных, процессов возбуждения, ионизации, фрагментации и перестройки молекул. [c.55]

    Серьезное внимание надо обратить на дальнейшее развитие и совершенствование новых методов изучения химического строения и механизма реакций, таких как электронный и ядерный магнитный резонанс, масс-спектрометрия и эффект Мессбауэра. В частности, можно отметить, что благодаря применению электронного резонанса химия свободных радикалов, находившаяся ранее в зачаточном состоянии, превратилась за последние 10 лет в большую, широко разработанную область современной химии. [c.496]

    Большим самостоятельным направлением в масс-спектрометрии является исследование ион-молекулярных реакций. Подробный обзор как техники исследования, так и полученных результатов дан Фридманом [30]. Изучение ион-молекулярных реакций привело к возникновению нового метода ионизации, получившего название химической ионизации [31, 32]. При химической ионизации пучок нейтральных частиц подвергается бомбардировке ионным пучком и при столкновениях происходит перезарядка. Например, гексан может быть иони- [c.301]


    Современная физическая органическая химия, развитие которой происходит одновременно с появлением новых и совершенствованием уже имеющихся методов физико-химического исследования, несмотря на относительную молодость, успела не только развиться в большую самостоятельную область знания, но и неузнаваемо изменить лицо органической химии. Поиск новых синтетических методов и синтез новых структур теперь во многом основан на тех знаниях о механизмах реакций, о связи между строением и реакционной способностью, которые накопила и обобщила физическая органическая химия. В настоящее время эта область переживает период бурного развития появление новых методов стимулировало развитие новых представлений, иногда дополняющих, а иногда и изменяющих существующие классические теории. Достаточно указать на развитие представлений о роли одноэлектронных переносов в органических реакциях в связи с появлением метода и теории химической поляризации ядер. Наряду с углублением наших знаний в уже известных областях, происходит рождение и становление новых областей физической органической химии, которые, развивая самостоятельную тематику, начинают через определенный период времени оказывать влияние на наши представления о строении органических соединений и механизмах органических реакций. Много новых и интересных данных принесли работы в области масс-спектрометрии оказалось, что результаты, полученные при изучении действия радиации на химические соединения, могут быть полезны для исследования реакционной способности радикальных частиц, а гомогенный катализ может быть дополнен интересным разделом — катализом мицеллами. [c.5]

    ИЦР используется для изучения структуры катионов, образующихся в масс-спектрометре. Продление времени пребывания ионов в приборе и возможность напуска газа-реагента позволяют определять продукты реакции (по их массе) возможных изомерных катионов со специально подбираемым реагентом (так же как в химических процессах, в растворе по продуктам реакции судят о структуре исходного вещества). Например, катион-радикалы енолов реагируют с кетоном (I), давая продукт (П1), а изомерные им катион-радикалы кетонов реагируют с (I), давая другой продукт (И), что позволяет легко отличить ионы этих двух структур  [c.258]

    В области газовой радикальной химии метод ЭПР не дал еще возможности исследования многоатомных радикалов и поэтому не может пока конкурировать со спектрометрией и масс-спектрометрией. Он оказался, однако, исключительно эффективным при прямом измерении концентраций атомов И, О и радикалов ОН в зоне разреженного пламени водорода и окиси углерода. Эти измерения позволили совершенно однозначно подтвердить основные результаты, полученные на основании кинетических и спектроскопических исследований в 40-х и 50-х годах, и благодаря им можно считать, что протекание этих сложных процессов находится в полном соответствии с общими принципами цепной теории и что химическая специфика носителей цепей, константы скорости реакции атомов Н, О и радикалов ОН, влияние примесей различного строения могут быть надежно охарактеризованы количественно. Более того, применение метода ЭПР позволило расширить использование этих процессов для изучения элементарных реакций и дало возможность установить с гораздо большей степенью точности, чем раньше, константы скоростей реакции атомов Н с углеводородами различного строения. Следует отметить, что эти результаты полностью подтвердили сформулированные ранее представления о связи реакционной способности углеводородных радикалов с их строением. [c.20]

    За последнее время в практику работы лабораторий прочно входят новые методы физико-химического исследования. К таким новым методам можно отнести и масс-спектрометрический анализ, без применения которого немыслима работа, связанная со стабильными, а также радиоактивными изотонами. Построенный, в основном, для целей изотошюго анализа масс-спектрометр с успехом применяется в ряде других областей исследования. При помощи масс-спектрометра проводят анализ различных газовых смесей, исследуют строение и энергетические уровни молекул, определяют состав паров различных веществ, исследуют кинетику химических превращений, обнаруживают промежуточные продукты реакций. Масс-спектрометр применяется при изучении каталитических процессов, проводимых с веществами, меченными какими-либо атомами [1—4]. Этот новый метод исследования был нами применен для изучения некоторых новых сво11ств алюмосиликатных катализаторов, а именно, их эмиссионных свойств. [c.378]

    Конечные продукты реакции, как правило, определяют путем проведения макроэлектролиза при контролируемом потенциале с последующим их выделением из раствора н анализом с помощью методов, обычно применяемых в органической химии (определение физических констант вещества, элементный анализ, ЯМР- и ИК-спектроскопия, масс-спектрометрия, хроматография и т. д.). Если эти продукты образуются в результате медленных химических превращений в объеме раствора, следующих за переносом электрона, то исследование кинетики таких химических стадий электрохимическими методами оказывается малоэффективным. Здесь более пригодны методы изучения химической кинетики в гомогенной фазе. Нечувствительность электрохимических методов эксперимента к достаточно медленным химическим превращениям в растворе является причиной того, что во многих случаях выводы о природе конечного продукта реакции, сделанные на основе данных препаративного электролиза и анализа поляризационных кривых, измеренных в стационарных или нестационарных условиях, оказываются различными, поскольку относятся к неодинаковым временным интервалам, охватывающим неодинаковое число стадий суммарного процесса. [c.195]

    Трудности третьего типа возникают тогда, когда меченое соединение биологически не идентично немеченому, т. е. когда имеет 1есто так называемый изотопный эффект . К счастью, биологический изотопный эффект имеет ту же самую основу и подчинЯ ется тем же правилам, что и эффекты химических систем поэтому его учет не представляет больших сложностей для химика. В частности, изотопные эффекты обычно проявляются только у изотопов водорода. Следует иметь в виду, что радиоактивные изотопы обычно занимают только небольшую часть меченых полох<ений . Так, в образце [ 1- С,2-ЗН] ацетата большая часть молекул не содержит ни одного изотопа, практически нет молекул, имеющих оба изотопа, и совершенно отсутствуют соединения, содержащие более одного атома трития. Так, если образец превращается химическим или биологическим путем в СНС СОК, не следует ожидать, что 2/3 всего количества трития будет потеряно наиболее вероятный результат будет зависеть от тонких деталей механизмов превращений. Ситуация складывается совершенно иначе, если все возможные положения действительно заняты атомами изотопа, как это обычно бывает в случае тяжелых изотопов, например [2-2Нз] ацетата. Так, для определения числа атомов водорода, переносимых вместе с атомом углерода в процессе С-метилирования, обычно используют [Ме-2Нз] метионин (при этом основным методом анализа служит масс-спектрометрия). Стереоспецифическое введение метки, например частичное включение в прохираль-ную СНг-группу, широко применяется для изучения стереохимии процессов биосинтеза. В любом случае, однако, следует помнить, что скорость реакций меченых соединений может отличаться от скорости реакций немеченых аналогов, и интерпретировать результаты с необходимой осторох<ностью в общем случае предпочтительным является эксперимент, дающий ответ типа да — нет, а не тот, который можно интерпретировать только на основе неопределенных в количественном отношении изотопных эффектов. [c.469]

    Применение масс-спектрометрии в кинетике химических реакций нередко открывает неожиданные черты их механизма. В качестве примера здесь мы приведем результат, полученный Фонером и Хадсоном [786] при изучении продуктов реакции атомов хлора и кислорода с гидразином КаН4. Согласно обычным представлениям главной реакцией в обоих [случаях должен быт1. отрыв атома Н, т. е. [c.64]

    В случае окислов азота следует проявлять осторожность при отнесении массовых чис л, так как распад при ионизации может приводить к образованию N0, которую можно спутать с N2 [228]. С помощью масс-спектрометров с высоким разрешением можно добиться воспроизводимости с стандартным отклонением 0,1%. При регистрации радиоактивности трудно добиться стандартного отклонения меньше чем 0,5% из-за случайных процессов распада и трудности приготовления образцов. Истинное положение меченого атома в молекуле может быть установлено по масс-спектрограмме, но при радиоактивном изотопе необходимо осторожное проведение химического разложения до простых молекул. Измерения плотности изотопной воды не позволяют выявить тонкие детали, но обычно их воспроизводимость достаточна для многих применений меченых атомов. Изотопное замещение в молекуле вызывает отчетливые спектральные смейте ния, и это обстоятельство может быть использовано для исследования реакций изотопных молекул in situ. Хорошим примером такого подхода является использование быстрорегистрирующего инфракрасного спектрометра для изучения быстрого обмена между 60%-ной концентрации) и NgOg [62]. [c.90]

    Основные научные работы связаны с изучением кинетики химических реакций, протекающих под действием различных физических факторов, особенно излучений, и с применением физических методов исследования в химии, в частности масс-спектрометрии для исследования реакций свободных радикалов и ионов. Обнаружил (1952) реакции органических ионов с молекулами в газовой фазе. Показал (1959), что отсутствие энергии активации — основная черта ионно-молекулярных реакций, за исключением тех, которые протекают с изменением орбитальной симметрии. Открыл (1959) ион ме-тония. Ввел (1957) правило последовательности ионных стадий сложных радиационно-химических превращений в газах ионизация — ионно-молекулярные реакции — рекомбинация заряженных частиц. Создал (1969) первый химический [c.482]

    Объем литературы, относящейся к масс-спектрометрии, продолжает увеличиваться, что свидетельствует о все более широком использовании этого метода для определения различных химических и физических характеристик. Настоящий обзор охватывает работы, опубликованные с января 1960 г. до ноября 1961 г. Моминьи [357] рассмотрел применение масс-спектрометрии в физической химии, Вагнер [498] дал обзор по использованию масс-спектрометрии для изучения реакций углеводородов. Обзор японских работ сделан Тсухия, Хашизуме и Сомено [486]. [c.652]

    Возможность одновременного определения содержания многих компонентов сложных смесей, малое количество вещества, необходимое для анализов, и высокая скорость их проведения обусловливают значительные преимущества масс-спектрометров перед другими современными аналитическими приборами и обеспечивают им широкое применение в различных областях науки и техники. Изучение вариаций изотопного состава веществ анализ молекулярного состава газов, жидких и твердых углеводородов и определение микропримесей в химии и нефтехимии анализ продуктов ядерных реакций в ядерной физике изучение кинетикн химических реакций исследование процессов [c.3]

    Создание отечественной масс-спектрометрической аппаратуры и методов молекулярного анализа органических соединений базировалось на работах В. Л. Тальрозе и его школы по изучению физических процессов в источниках ионов [1, 2], кинетики химических реакций, создании новых методов хроматомасс-спектрометрии для анализа молекулярного состава сложных смесей [3. Существенную роль в этом отношении сыграли также работы Н. Н. Туницкого [4], М. В. Тихомирова [5], Ф. И. Вилесова [6]. [c.3]

    Для физико-химических исследований процессов испарения и роста кристаллов, кинетики и термодинамики поверхностных реакций, а также для изучения пространственного и энергетического распределения молекулярных потоков с исследуемых поверхностей СКВ Аналитического приборостроения АН СССР совместно с Институтом кристаллографии АН СССР разработало масс-спектрометр МС-1303 (рис. III.18). Масс-спектрометр МС-1303 имеет такие же анализатор и системы регистрации ионных токов, что и прибор МС-1301, однако существенно отличается от него конструкцией ионообразующего узла и испарителей. Источником молекулярного пучка служит открытая поверхность исследуемого вещества (площадью 2 мм ), помещенного в испаритель, который можно нагревать до 2750 К. Испаритель можно поворачивать относительно направления на источник ионов на 90°, что позволяет изучать диаграммы направленности молеку.чярного потока. [c.78]

    Масс-спектральный детектор с индуцированной плазмой незаменим при определении химических форм селена в пробах воды и почвы [148]. Надежность идентификации возрастает при использования метода изотопного разбавления ( 25е). Метод ГХ/МС использовали для однозначной идентификации ЛОС в салоне самолетов [151], обнаружения сильных лакриматоров сложного строения в выхлопных газах дизельных двигателей [152], изучения реакций химических соединений в атмосфере [153], идентификации компонентов ракетного топлива [ 154] и определения полихлорированных дибензо-п-диоксинов и дибензофуранов в выбросах мусоросжигательных заводов, в воде и почве [155]. Последнее применение МС-детектора является наиболее важным по причине уникальности масс-спектрометрии высокого разреще-ния в определении (в комбинации с хроматографическим разделением) индивидуальных изомеров диоксинов (подробнее см. гл. X). [c.440]

    За последнее десятилетие интенсивно развивается направление в неорганической химии, связанное с изучением химических превращений при высоких температурах. Ведущую роль здесь играют методы высокотемпературной масс-спектрометрии. Естественным дополнением этих методов являются тензиметрические методы и в первую очередь статический метод и метод потока. Они позволяют исследовать процессы до температур 1100—1200°С при суммарном давлении от нескольких десятых долей кПа до нескольких сотен кПа. Детальное описание техники эксперимента и результаты исследований тензиметрическими методами можно найти в [1—3]. Хотя с помощью этих методов накоплен обширный материал о термодинамических свойствах продуктов реакций при высоких температурах, сложившаяся практика термодинамических расчетов тензиметрического эксперимента не дает адекватного описания сложных химических равновесий в газовой фазе [4—8]. В работах [9—13] предложен новый метод анализа тензимет-рических данных аналогичные методы развиваются в последние годы в [14—16], а также при изучении равновесий комплексообразования в растворах [17—19]. [c.232]

    Первое сообщение о применении масс-спектрометрии для исследования процесса механодеструкции полимеров было опубликовано Регелем с соавторами в 1962 г. В этой работе образец разрушается непосредственно в камере с ионным источником время-пролетного масс-спектрометра. Задачей исследования было изучение летучих продуктов, выделяющихся из полиметилметакрилата и полистирола, для того, чтобы получить экспериментальное подтверждение представлений Журкова. Авторы работы установили, что существует определенная связь между процессами механо- и термодеструкции, но подчеркнули, что их результаты относятся только к полимерам, в которых термическая деструкция инициируется разрывом связей в главной цепи. Этот процесс обычно начинается в температурном интервале 300 — 400 °С, что существенно превышает температуры, используемые при механических испытаниях. Авторы этой и последующих работ, выполненных в том же направлении, не определяли остаточного содержания мономера в образце до его разрыва. Образцы выдерживали в вакууме в течение нескольких суток выше температуры стеклования для удаления остаточных летучих компонентов. Регель и соавторы [6] очень подробно обсудили полученные ими результаты и пришли к выводу, что как механо-, так и термодесгрукция сопровождаются элементарными реакциями, связанными с разрывом химических связей. [c.73]

    Химическое отделение Заведующий W. D. Ollis Направление научных исследований теория химической связи в органических и неорганических молекулах спектроскопия возбужденных молекул применение рентгеновской дифракции для изучения строения жидкостей и растворов реакции атомов и радикалов в газовой фазе полярография в неводных растворителях химическая структура смешанных окислов металлов боргидриды органические реакции в сильных кислотах фотоокисление электронная и вибрационная релаксация в ароматических молекулах металлорганические соединения и комплексы переходных металлов химия фенолов, природных пигментов, алкалоидов механизм действия энзимов строение, синт. з, биосинтез и масс-спектрометрия природных О-гетероциклических соединений фотохимия нуклеиновых кислот полициклические тиофены нитроамины биосинтез. [c.270]

    Отрыв одного электрона от молекулы с заполненной электронной оболочкой приводит к радикал-катиопу. Как было сказано выше (разд. 1.1), такие частицы могут рассматриваться как карбоний-ионы, но наличие нечетного числа электронов резко отделяет их от обычных диамагнитных ионов карбония. По этой причине они будут рассмотрены в гл. 8 вне рамок основного обсуждения карбониевых ионов. Здесь уместно только отметить, что радикал-катионы обычно образуются при отрыве одного электрона от стабильной молекулы либо за счет химического окисления, либо за счет столкновения с энергетически богатой частицей фотона, электрона или более тяжелой частицей, образующейся при радиолизе. Соответственно обычный карбоний-ион может образоваться при отрыве электрона от электрически нейтрального свободного радикала. Так, например, под действием электронного удара в масс-спектрометре могут генерироваться ионы карбония из свободных радикалов. Пока эта реакция не представляет практического интереса, но ее изучение приводит к получению данных по энергетике образования карбоний-ионов (разд. 4.1.3). [c.72]


Смотреть страницы где упоминается термин Изучение химических реакций в масс-спектрометре: [c.653]    [c.11]    [c.198]    [c.653]    [c.18]    [c.9]    [c.18]    [c.667]    [c.97]    [c.19]    [c.1712]    [c.58]   
Смотреть главы в:

Методы исследования структуры и свойств полимеров -> Изучение химических реакций в масс-спектрометре

Методы исследования структуры и свойств полимеров -> Изучение химических реакций в масс-спектрометре




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте