Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические функци избыточные

Рис. V. 4. Термодинамические функции смешения (а) н избыточные функции б) в системе метилэтилке-тон(1) — вторичный бутиловый спирт (2) при 60 °С. Рис. V. 4. <a href="/info/1594930">Термодинамические функции смешения</a> (а) н <a href="/info/224566">избыточные функции</a> б) в системе метилэтилке-тон(1) — вторичный бутиловый спирт (2) при 60 °С.

    Избыточные термодинамические функции обычно определяют как избыток какого-либо термодинамического свойства реального раствора над соответствующим свойством идеального раствора такого же состава при одних и тех же температуре и давлении  [c.380]

    Идеальный раствор представляет собой гипотетическую систему, и ее характеристики используют в качестве стандарта прп описании свойств реальных систем. С этой целью обычно рассматривают избыточные термодинамические функции (АС -, А// , AS , Af/ ), представляющие разность между функциями смешения реального и идеального растворов одинаковой концентрации. В выражении химического потенциала для компонента / реального раствора появляется дополнительный член, включающий коэффициенты активности 7, ц = ц, + 7 1п yjX,, [c.37]

    Избыточные термодинамические функции [c.380]

    Для исследования структуры растворов фуллерена С60 является интересным провести исследования растворимости вещества и определить характер температурной зависимости растворимости. При помощи экспериментальных данных по растворимости и привлечения модельных представлений для их расчетов появляется возможность определения некоторых термодинамических характеристик растворов и растворенного вещества, таких, как интегральная теплота растворения в насыщенный раствор, активности и коэффициенты активности растворенного вещества, а также избыточные термодинамические функции. Выявленные параметры растворов позволяют сделать предположения о характере межмолекулярных взаимодействий в исследуемых системах и, в свою очередь, оценить роль структурообразования в растворах. [c.57]

    В разделе 3.2.1. показано, что вычисленные значения энтальпии растворения С60 в насыщенные толуольные растворы при температурах ниже ТМР максимально близки к значению энтальпии плавления фуллерена С60, что явно указывает на близость свойств данных растворов к идеальным. Однако известно, что образование идеальных растворов, кроме того, не сопровождается тепловым и объемным эффектом. Сравнительный анализ с идеальными растворами по данному аспекту возможен при помощи расчета значений парциальных избыточных термодинамических функций фуллерена С60 в исследуемых растворах. [c.66]

    Для конкретизированного представления о величинах отклонений термодинамических свойств растворов фуллерена С60 от соответствующих им идеальных растворов целесообразно провести расчет парциальных избыточных термодинамических функций фуллерена С60 в насыщенных растворах при различных температурах. [c.67]

    Расчет парциальных избыточных термодинамических функций фуллерена С60 в насыщенных растворах [c.67]

    Расчет избыточных парциальных термодинамических функций для фуллерена С60 в насыщенных растворах толуола при температуре ниже ТМР показал (табл. 3.1), что ни одна из термодинамических величин для фуллерена С60 в данных растворах не отличается от таковой для модели соответствующего идеального раствора. Полученный результат согласуется с данными расчетов энтальпии растворения С60 в насыщенный раствор толуола ниже ТМР (раздел [c.69]


    Растворы С60 в толуоле при температурах выше ТМР характеризуются положительными отклонениями от идеальности, обусловленными весьма необычным сочетанием парциальных избыточных термодинамических функций фуллерена С60. Отрицательная энтальпия смешения компенсируется еще более отрицательной избыточной парциальной энтропией смешения для С60 (табл.3.1). Полученный результат совпадает с данными модельных расчетов других авторов для данной системы. Однако нет каких-либо объяснений в отношении полученного результата, кроме предположения о возможной метастабильности данной системы. [c.70]

    В случае отклонения раствора от идеального состояния следует рассчитывать избыточные термодинамические функции растворе- [c.164]

    Сравнение рассматриваемых моделей для температур выше ТМР в отношении растворов СбО в толуоле показывает, что расчеты по модели [3] и по формуле Шредера оказываются совершенно идентичными. Однако при этом полагают, что растворы С60 в толуоле являются идеальными, тогда как наши расчеты по формуле Шредера совместно с расчетом коэффициентов активности С60 и парциальных избыточных термодинамических функций указывают на существенную неидеальность данных систем. [c.76]

    ИЛИ через избыточные термодинамические функции и мольные концентрации [c.249]

    В случае отклонения раствора от идеального состояния следует рассчитывать избыточные термодинамические функции растворения. Так, избыточная свободная энергия растворения [c.212]

    Коэффициент активности и избыточные термодинамические функции растворения характеризуют межмолекулярные взаимодействия в растворе, измерение этих величин хроматографическим методом путем подбора различных неподвижных жидких фаз позволяет сравнительно просто получать данные о природе этих взаимодействий. [c.212]

    Общепринята следующая классификация растворов на основе представлений об избыточных термодинамических функциях  [c.178]

    На основе уравнений (1.4) и (1.5), а также определения избыточных термодинамических функций (1.2) можно получить выражение, характеризующее изменение свободной энергии поверхностного слоя при некотором произвольном положении разделяющей поверхности  [c.10]

    Избыточной термодинамической функцией называют разность между функцией смешения рассматриваемого раствора и идеального раствора той же концентрации  [c.242]

    Основное достоинство метода Гиббса заключается в том, что между избыточными термодинамическими функциями поверхностного слоя (1.2) существуют соотношения, аналогичные тем, которые связывают соответствующие объемные функции. [c.10]

    Избыточные термодинамические функции. Знать активность и коэффициент активности каждого компонента недостаточно для выяснения причин отклонений реальных растворов от идеального поведения. Поэтому в термодинамике растворов широко используются так называемые избыточные величины термодинамических функций. [c.324]

    При выводе уравнения (XII.131), как и других избыточных термодинамических функций, используется симметричный способ нормировки. Сравнивая (ХП.21) и (XII.131), получаем [c.324]

    Избыточные термодинамические функции тесно связаны с экспериментально измеряемыми величинами, такими, как давление па- [c.325]

    V. 2.2. Термодинамические функции реального раствора. Избыточные термодинамические функции. Активности [c.242]

    На основе анализа соотношений между избыточными термодинамическими функциями наиболее удобно рассматривать реальные растворы и оценивать характер межмолекулярного взаимодействия в них. По характеру отклонений от идеальности раство-)а можно судить о природе растворов и классифицировать их. Три этом целесообразно различать два предельных случая  [c.326]

    Принимая эти условия за исходные, определяют коэффициент активности газа в данном состоянии, для чего находят избыточную энергию перехода одного моля газа из данного состояния в стандартное. Избыточная энергия представляет разность энергий (работ) перехода реальной и идеальной систем из данного состояния в стандартное. Выбор произвольного стандартного состояния широко используется в термодинамике для оценки любых термодинамических функций и вызван тем, что определить их абсолютное значение нельзя. Так как коэффициенты активности являются функциями от термодинамических свойств системы, естественно, что и для их оценки прибегают к произвольно выбранному стандартному состоянию. [c.15]

    Воспользуемся методом Гиббса и рассмотрим реальную систему и систему сравнения, как это было сделано при определении гиббсовских избыточных адсорбций и других экстенсивных поверхностных термодинамических функций (см. рис. 7.1). Общие молекулярно-статистические выражения для химического потенциала адсорбата в газовой фазе, ц , и в адсорбированном состоянии, ц, имеют следующий вид  [c.161]

    Для приближенных оценок избыточных термодинамических функций растворов, образованных неполярными компонентами с близкими молярными объемами (допустимы различия не более, чем в 2—3 раза) широко применяется теория регулярных растворов Скетчарда — Гильдебранда. Исходное предположение теории состоит в том, что изменение энтропии при изотер-мо-изохорном смешении компонентов имеет идеальное значение  [c.250]

    ФУНКЦИИ СМЕШЕНИЯ И ИЗБЫТОЧНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ [c.399]

    Первое прибл-ижение теории строго регулярных растворов отвечает тому, что в разложении термодинамических функций (Х1У.94)— (XIV.96) сохраняют члены второго порядка малости. Не записывая соответствующих формул, отметим только, что в первом приближении, как и в нулевом, концентрационные зависимости термодинамических функций симметричны относительно переменных х, и х . В первом приближении получаем отрицательную избыточную энтропию, каков бы ни был знак энергии взаимообмена ш. Отрицательные значения 8 являются естественным следствием принятой модели, согласно которой изменение энтропии при образовании раствора определяется исключительно статистикой распределения частиц по узлам. Понятно, что в силу энергетической предпочтительности образования пар определенного типа система оказывается более упорядоченной, чем идеальная смесь, отвечающая совершенно хаотическому распределению по узлам. Изменение же других характеристик, помимо энергии взаимодействия ближайших соседей, в зависимости от типа окружения не учитывается допускается, что при квазихимической реакции (Х1У.62) происходит изменение только потенциальной энергии. [c.424]


    ИЗБЫТОЧНЫЕ ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ [c.132]

    ОБЩИЕ СООТНОШЕНИЯ ДЛЯ ИЗБЫТОЧНЫХ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ [c.135]

    Разность между термодинамической функцией смешения для реального раствора и значением этой функции для идеального раствора А ая при тех же Г и р называется избыточной термодинамической функцией. Избыточные термодинамические функции обозначают символом Л (Е — первая буква английского слова ex ess — избыточный). Таким образом, согласно определению [c.324]

    В основе термодинамики агрегативной устойчивости лежит представление о расклинивающем давлении, введенное Б. В. Дерягиным в 1935 г. Расклинивакнцее давление возникает при сильном уменьшении толщршы пленки в результате взаимодействия сблп кающихся поверхностных слоев. Пленкой называют часть системы, находящуюся между двумя межфазными поверхностями (газообразными, твердыми или жидкими). Если пленка имеет большую толщину, то обобщенное уравнение первого и второго начал термодинамики отличается от представленных ранее (с одним межфазным слоем) только тем, что в него входят поверхностные энергии (oi,2 и СТ2.3) обеих межфазных поверхностей (слоев). При уменьшении толщины пленки ограничивающие ее поверхностные слои начинают перекрываться, вследствие чего возникает давление, обусловленное взаимодействием как сближающихся фаз, так и межфазных слоев. Таким образом, избыточные термодинамические функции тонких пленок зависят от толщины пленки h. Например, для пленки выражение избыточной энергии Гиббса имеет вид [c.273]

    Очевидно, что для расчета этих величин необходимо знание коэффициента активности, который, как было показано выше (урав-шение 165), рассчитывается из величины удерживания. Для полу- чения данных об избыточной энтальпии растворения необходимо лровести серию экспериментов при разных температурах и получить линейную зависимость логарифма коэффициента активности ют обратной температуры опыта. Вычитая полученные значения ДА м Д из термодинамических функций ДР, АН° и Д5°, можно определить свободную энергию, энтальпию и энтропию испарения, как это следует из (166). [c.165]

    Приведенные определения термодинамических функций весьма удобны, так как между избыточными термодинамическими функциями суидествуют соотношения, аналогичные тем, которые связывают объемные функции фаз. [c.9]

    Избыточные термодинамические функции легко рассчитываются на основе общетермодинамических соотношений. На основании соотношения (У.ЗО) избыточная энтропия определяется путем дифференцирования (XII.132) по температуре [c.325]

    Термодинамические свойства неидеального раствора можно охарактеризовать избыточными термодинамическими функциями, которые представляют разность между функциями смешения данного раствора и идеального раствора. Избыточные функции обозначают симво- [c.402]


Смотреть страницы где упоминается термин Термодинамические функци избыточные: [c.51]    [c.249]    [c.26]    [c.9]    [c.430]    [c.53]    [c.19]   
Химический энциклопедический словарь (1983) -- [ c.207 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Избыточные термодинамические функции

Функция термодинамическая



© 2025 chem21.info Реклама на сайте