Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антистоксова частота рассеяния

    Повышения интенсивности рассеянного света можно добиться с помощью достаточно интенсивных световых потоков или мощных лазеров. Качество регистрации рассеянных квантов можно повысить, имея совершенное оптическое и электронное оборудование. Применение лазеров стимулировало развитие этой, уже ставшей классической, области спектроскопии. Лазеры не только повысили чувствительность спектроскопии обычного (спонтанного) комбинационного рассеяния, но и стимулировали развитие новых методов, основанных на вынужденном, например на антистоксовом, комбинационном рассеянии, носящем название когерентного антистоксового рассеяния света (КАРС) или, в частности, резонансного комбинационного рассеяния (РКР). При возрастании интенсивности падающего лазерного излучения становится значительной интенсивность рассеянного стоксового излучения. В этих условиях происходит взаимодействие молекул одновременно с двумя электромагнитными волнами лазерной vл и стоксовой V т = Vл — v , связанных между собой через молекулярные колебания с VI,. Такая связь (энергетическая) между излучением накачки и стоксовой (или антистоксовой) волной может привести к интенсивному поляризованному излучению на комбинационных частотах, другими словами— к вынужденному комбинационному рассеянию. Причем в этих условиях оказывается заметной доля молекул, находящихся в возбужденном колебательном состоянии, и в результате на частотах Гл + VI, возникает интенсивное антистоксово излучение. [c.772]


Рис. 5.4. Энергетическая схема, иллюстрирующая комбинационное рассеяние а - излучение иа антистоксовой частоте V, 6 - излучение на стоксовой частоте Рис. 5.4. Энергетическая схема, иллюстрирующая <a href="/info/80736">комбинационное рассеяние</a> а - излучение иа антистоксовой частоте V, 6 - излучение на <a href="/info/842355">стоксовой</a> частоте
    При взаимодействии невозбужденной молекулы (основное состояние, F = 0) с фотоном она может поглотить этот фотон и перейти на более высокий энергетический уровень, который при комнатной температуре нестабилен (рис. 6-27). Из этого состояния молекула может вернуться в нормальное состояние, испустив фотон, который, очевидно, имеет в этом случае такую же энергию, что и поглощенный фотон. Таков механизм релеевского рассеяния. Кроме этого, молекула может перейти в другое возбужденное состояние (Г=1) с меньшей энергией, при этом она испускает фотон, энергия которого равна энергии поглощенного фотона минус разность энергий, соответствующих уровням У = 1иУ = 0. В этом случае частота рассеянного света оказывается меньше частоты падающего света соответствующую спектральную линию называют стоксовой линией. Наконец, молекула может поглотить фотон, находясь в возбужденном состоянии V =1), перейти в нестабильное состояние с более высокой энергией, а затем перейти в нормальное состояние, испустив фотон. В этом случае энергия испускаемого фотона равна сумме энергии поглощенного фотона и разности энергий, соответствующих уровням У = 1 и У = 0. Соответствующая спектральная линия называется антистоксовой линией. При комнатной температуре большинство молекул находятся в нормальном [c.284]

    В этом параграфе, а также в четвертом разделе рассматриваются наиболее важные моменты теории спектров комбинационного рассеяния молекул, так как общая теория изложена достаточно подробно в курсах физики и строения молекул. Основная часть рассеянного молекулами излучения сохраняет частоту падающего излучения и называется релеевским рассеянием. В то же время энергия падающего монохроматического излучения частично изменяется при рассеянии на молекулах, т. е. наблюдается н е -упругое рассеяние, что обусловлено изменением энергетического состояния рассеивающей молекулы. Если молекула переходит под воздействием излучения на более высокий энергетический уровень, то частота рассеянного излучения уменьшается. Эти переходы называются стоксовыми (рис. VI.I). И наоборот, частота рассеянного излучения увеличивается, если молекула переходит в более низкое энергетическое состояние. Такие переходы называются антистоксовыми. Поскольку вращательные уровни расположены на небольших (в шкале энергий) расстояниях, то вероятности переходов в верхние и нижние состояния практически [c.113]


    Поскольку спектроскопия комбинационного рассеяния подробно рассмотрена в ряде книг и обзоров [2—8], мы обсудим только некоторые последние достижения, представляющие интерес для применения в аналитической химии [266]. Приводимые ниже примеры иллюстрируют различные методы спонтанного комбинационного рассеяния с использованием лазеров с фиксированной и перестраиваемой частотой, когерентное антистоксово комбинационное рассеяние и инверсное комбинационное рассеяние внутри резонатора лазера. [c.309]

    В работе [491] получено вынужденное комбинационное рассеяние монокристаллов алмаза, кальцита и серы. В работе использовался кристалл алмаза типа П А в форме диска с диаметром около 9 мм при толщине 2,95 мм, вырезанный перпендикулярно к оси [111]. В спектре наблюдались стоксовы частоты 1325 и 2661 слг и антистоксова частота 1335 см К В спектре кальцита наблюдались линии 1075 и 2171 см- в спектре серы 216, 472 и 946 см К [c.489]

    Согласно квантовой теории, антистоксова компонента при комбинационном рассеянии наблюдается тогда, когда фотон рассеивается на молекуле, находящейся на возбужденном колебательном уровне, который отвечает колебанию с частотой V. В этом случае после рассеяния молекула теряет энергию колебательного кванта Л у, а частота рассеянного фотона увеличивается на величину у. Обычно антистоксова компонента имеет незначительную интенсивность, так как для частот, с которыми имеет дело метод комбинационного рассеяния, вероятность нахождения молекулы в колебательно-возбужденном состоянии очень мала. — Прим. ред. [c.120]

    Рассеяние света без изменения частоты называется классическим или релеевским. Рассеяние света с изменением частоты называется комбинационным, причем рассеяние с частотой с (оз — 0) ) называется стоксовым, а с частотой с т Ыд) — антистоксовым. [c.17]

    Схема происхождения спектров комбинационного рассеяния приведена на рис. 67. Частоты стоксовых и антистоксовых линий представляют собой комбинацию частоты релеевской линии с частотой перехода между уровнями пит молекулы V" = AE /h . Согласно (43.4) и (44.2) [c.146]

    Пусть среда освещается монохроматическим светом с квантами /lVQ, которые поглощаются молекулами среды, вследствие чего они сами становятся источником рассеянного света той же частоты т. е. будет классическое рассеяние света по Релею. Часть энергии падающих квантов /lVo может расходоваться и на возбуждение колебаний ядер внутри молекулы частоты V, и тогда в рассеянном свете появляются кванты меньшей величины /гvд — Ну. Если квант /lVo поглощается молекулой, в которой колебательный уровень уже был возбужден, то энергия этого возбуждения может добавиться к энергии кванта падающего света, и вследствие этого молекула излучает также кванты /гvo + /гv. В результате этого явления в спектре рассеяния наряду с основными линиями частоты V,, появляются симметрично расположенные по обеим их сторонам линии комбинационного рассеяния Vц+v. Линии спектра, которым соответствуют частоты Vo —V, называются стоксовыми, линии с частотами 0 + V — антистоксовыми. [c.74]

    Наблюдаемые сдвиги частот имеют обычно порядок от 3-.10 до 1 10 сек— н соответствуют линиям колебательных уровней энергии но иногда наблюдаются и вращательные линии комбинационного рассеяния. И первые и вторые линии обнаруживаются лишь при интенсивном освещении, длительной экспозиции и достаточно большой концентрации рассеивающего вещества. Особенно мала интенсивность антистоксовых линий, так как число возбужденных молекул, от которых они излучаются, гораздо меньше числа невозбужденных. [c.74]

    С другой стороны, при взаимодействии возбужденной молекулы с квантом падающего света куо она может, переходя в основное состояние, отдать часть своей энергии, которая высвечивается фотоном с энергией /1(л о+ и). Рассеянному свету с частотой отвечает антистоксова [c.171]

    Когерентное антистоксово рассеяние света (КАРС) связано с третьим членом в разложении (1), содержащим поляризуемость третьего порядка у. При одновременном облучении образца двумя лазерами с частотами [c.437]

    В некоторых случаях в специальном режиме можно получить ИК-спектры испускания нагретых образцов и/или при использовании охлаждаемых детекторов (см. разд. 9.2.2). КР-спектры формируются при неупругом рассеянии света молекулами (см. рис. 9.2-1). Для возбуждения КР-спектров требуются монохроматичные лазерные источники в видимой или ближней ИК-областях, например, Аг+-лазер (488 нм) или К(1 АС-лазер (1,06 мкм). Комбинационное рассеяние относится к очень слабым эффектам. Только около 10 падаюш,его излучения претерпевает упругое рассеяние. Эта часть излучения формирует рэлеевскую линию, имеющую такую же частоту, что и возбуждающее излучение. Около 10 ° падающего излучения приводит к возбуждению колебательных или вращательных уровней основного электронного состояния молекул. Это является причиной потери энергии падающим излучением и вызывает сдвиг полосы в длинноволновую область по сравнению с рэлеевской линией (стоксов сдвиг). Антистоксовы линии с большей частотой, чем падающее излучение, можно наблюдать, когда рассматриваемые молекулы до взаимодействия с лазерным излучением уже находятся в возбужденных колебательных состояниях (при более высоких температурах) (рис. 9.2-2). При комнатной температуре антистоксовы линии слабее, чем стоксовы. Соотношение интенсивности стоксовых и антистоксовых линий является функцией температуры образца (почему ). [c.167]


    В этом процессе меняется не только направление фотона, но и его энергия. Это означает, что меняется энергетическое состояние молекулы А. На рис. 5.4 показаны две схемы, иллюстрирующие комбинационное рассеяние. Состояния с энергией Е и Е могут относиться к колебательным, вращательным и электронным состояниям. Как видно, появляется излучение на частоте у, р = [Ау - Е -Е) / А. Если Е > Е, го излучение происходит на частоте Уст < у1 и называется стоксовым. Если Е < < Д то излучение происходит на частоте Уа > У1 и называется антистоксовым. [c.123]

    В последнее время очень бурно развивалась техника, сочетающая вынужденное и спонтанное комбинационное рассеяние. Речь идет о когерентной антистоксовой римановской спектроскопии (КАРС). Схема уровней, иллюстрирующая КАРС, показана на рис. 5.5. Метод основан на том, что в поле достаточно интенсивных световых лучей с частотами v, и V2, удовлетворяющих условию П = vj - V2 (Q - частота молекулярных [c.125]

    Таким образом, в частотах стоксовой (со —ш —<о ) и антистоксовой (о)д =т +сй ,.) линий комбинируются частота монохроматического излучения источника с частотой собственных колебаний молекулы. Поэтому описанное выше явление называют комбинационным рассеянием. Объяснение этого явления можно дать как на основе классической электромагнитной теории, так и на основе квантовой теории света. [c.75]

    Падающее излучение создается обычно интенсивным монохроматическим источником света в видимой или близкой ультрафиолетовой области (например, линии 435,8 или 253,7 нм спектра ртути). Излучение, рассеянное под Прямым углом к падающему свету, направляется в спектрограф, обладающий высоким разрещением. Если образец обладает рамановской активностью , результирующая спектрограмма состоит из исключительно интенсивной линии, соответствующей частоте падающего света (рэлеевское рассеяние), и очень близко расположенных к ней других линий. Со стороны меньшей частоты находятся более интенсивные линии, которые называются стоксовыми линиями. Относительно слабые линии, соответствующие более высокой частоте, называются, антистоксовыми линиями. [c.161]

    Перестраиваемое по частоте когерентное излучение может быть получено и за пределами упомянутого выше спектрального диапазона прямой оптической генерации ЛОС путем преобразования их излучения методами нелинейной оптики (генерация высших гармоник, получение суммарных и разностных частот, использование стоксова и антистоксова вынужденного комбинационного рассеяния разных порядков в водороде или других средах, накачка параметрических генераторов света). Пока это наиболее эф- [c.193]

    Все указанные свойства лазерного излучения нашли свое применение в современной фотохимической практике. Монохроматичность лазерного излучения, большой выбор лазерных длин волн, а также их способность перестраиваться по частоте позволяют легко настроиться на нужную длину волны. Малая расходимость лазерного излучения существенно облегчает дозиметрию и делает возможными эксперименты в многопрохо-довой кювете с облучаемым веществом. Когерентность лазерного излучения используется в ряде специальных методов анализа фотохимических продуктов, например в когерентном антистоксовом комбинационном рассеянии. Наконец, последнее свойство лазерного излучения приводит сразу к двум важным последствиям в фотохимии. Это возможность осуществления многоквантовых (многоступенчатых, многофотонных) фотохимических процессов, а также возможность исследования быстрых стадий фотохимических реакций с временным разрешением вплоть до 10 с. [c.5]

    Спектр КР, как правило, представляет собой колебат. спектр. В области малых значений v, могут проявляться переходы между вращат. уровнями (вращат. спектры КР), реже электронные переходы (электронные спектры КР). Т. обр., частоты рассеянного света являются комбинациями частоты возбуждающего света и колебат. и вращат. частот молекул. При обычной т-ре стоксовы линии значительно интенсивнее антистоксовых, поскольку б. ч. молекул находится в невозбужденном состоянии при повыщении т-ры интенсивность антистоксовых линий растет из-за частичного теплового заселения возбужденных колебат. состояний Е . Интенсивность стоксовых линий КР пропорциональна (Vq — V,) при Vq V3, (у,д-частота электронного перехода), а при Vg -> Узд резко возрастает (резонансное КР). Для каждой конкретной линии КР интенсивность-ф-ция поляризуемости молекул (а), в отличие от ИК поглощения, где интенсивность-ф-ция дипольного момента молекулы (ц). Значение наведенного дипольного момента определяется выражением [c.437]

    Примерами нелинейного рассеяния являются гиперкомби-национное рассеяние, вынужденное комбинационное рассеяние, когерентное антистоксово рамановское рассеяние (КАРС). Гиперкомбинационное рассеяние света заключается в том, что в отличие от линейного рассеяния (см. разд. 5.2.5) в неупругом столкновении с частицей А( ) участвуют два фотона с частотой VI. В результате образуется молекула в другом энергетическом состоянии и один фотон, имеющий энергию hvj. А(Е )+2 Av, [c.125]

    Недавно разработан очень чувствительный метод когерентного антистоксова комбинационного рассеяния ( ARS), когда газообразный образец освещают двумя коллинеарными пучками лазерного излучеиия с частотами vi и V2, подобранными таким образом, что разность Vi — V2 = Va равна частоте Vi, колебательного перехода активного в СКР [276]. Поскольку в газах дисперсия иренебрелеимо мала, для коллинеарных пучков удается получить удовлетворительное согласование фаз тогда в том нее самом направлении, что и у входящих пучков, будут возникать составные полосы с комбинациями частот 2vi — V2 и 2 2 — VI. Обычно измеряют антистоксову полосу с частотой [c.311]

    Тот факт, что А/может быть равно 2, эквивалентен результату, полученному на основании классической теории в параграфе 336, согласно которому частота рассеянного света изменяется на величину 2v .. В том случае, когда А/ = 0, рассеянное излучение имеет ту же частоту, что и падающий свет, и, следовательно, в этом случае отсутствует комбинационное смещение линий и линии рассеянного света не отличимы от спектральных линий падающего света или от линий релеевского рассеяния. Комбинационные частоты, которые могут наблюдаться для --молекул, соответствуют переходам Д/=- -2 (стоксовы линии) и Д/=—2 (антистоксовы линии). Вследствие того, что вращательные кванты относительно малы, значительное число уровней энергии будет занято многими молекулами при обычных температурах. Следовательно, можно наблюдать несколько вращательных комбинационных переходов, соответствующих начальным значениям /, равным 0,1, 2.. . и т. д. до 10 и даже более. Р1спользуя уравнение (28.1) для энергии жесткого ротатора [c.248]

    При рассеянии света в молекулярной среде возможны два случая. В первом случае световые кванты рассеиваются в неизменном виде (упругое релеевское рассеяние). Это приводит к появлению в спектре рассеянного излучения линии с той же частотой vo (с той же длиной волны Хо), что и падающее излучение (релеевская линия). Во втором случае в результате обмена энергией между квантом падающего излучения и молекулой рассеяние света имеет иную частоту Vft (неупругое рассеяние). Разность соответствует частоте колебаний молекулы. Эта разность положительна (стоксовы линии), если рассеяние света сопровождается повышением запаса колебательной энергии молекулы. В этом случае в результате неупругого рассеяния молекула переходит на один из возбужденных колебателыпз1х уровней (Ей Е2 и т. д., рис. 77). Раз юсть А л может быть и отрицательной, если молекула была возбуждена и находилась иа одном из 1юзбун<депных колебательных уровней (антистоксовы линии). В этом случае реализуется передача колебательной энергии падающему кванту и его энергия, а значит и частота рассеянного света, растет (Л /, <0). Поскольку доля возбужденных молекул по сравнению с певозбужденными мала, интенсивность антистоксовых линий меньше, чем стоксовых. [c.573]

    К нелинейно-оптическим эффектам, связанным с относятся линейный электрооптический эффект (эффект Покельса), удвоение частоты, смешение частот, оптическое просветление и др. Член с в уравнении (12.1) обусловливает такие процессы, как квадратичный электрооптический эффект (эффект Керра), утроение частоты, четырехволновое с.мешение, самофокусировка, эффекты стимулированного рассеяния (Рамана, Бриллюэна и др.), когерентное антистоксово комбинационное рассеяние и т. д. [c.423]

    Возникновение спутников основной частоты получило название комбинационного рассеяния (КР) света или эффекта Рамана (в зарубежной литературе). Оно было открыто независимо и одновременно советскими физиками Мандельштамом и Ландсбергом и индийскими физиками Раманом и Кришнаном. Вероятность неупругого столкновения мала, поэтому стоксовы линии слабые, интенсивность их в миллионы раз меньше релеевской, при фотографировании требуется длительная, часто многочасовая экспозиция. Еще более слабы ан-тистоксовы линии, так как вероятность сверхупругого рассеяния еще меньше (при низких температурах доля возбужденных молекул ничтожна). Сравнение интенсивности релеевской, стоксовой и антистоксовой линий приведено на рис. 68. [c.146]

    Происхождение комбинационного рассеяния можно понять, используя представления квантовой теории рассеяния. При столкновении с молекулами кванты света рассеиваются. Если столкновение полностью упругое, они отклоняются от первоначального направления своего движения (от источника), не изменяя энергии. Если же столкновение неупругое, т. е. происходит обмен энергией между квантом и молекулой, молекула может потерять или приобрести дополнительно энергию Д в соответствии с правилами отбора. Приче.м ДЕ должна быть равна из.менению колебательной и (или) врапдательной энергии и соответствовать разности энергий двух разрешенных ее состояний. Излучение, рассеянное с частотой, меньшей, чем у падающего света, называют стоксовым, а с частотой большей — антистоксовым. Стоксово излучение сопровождается увеличением энергии молекул (такой процесс может произойти всегда), и линия его более интенсивна (на несколько порядков), чем антисток-сова, так как в этом случае молекула уже должна находиться в одном из возбужденных состояний (рис. 32.9). [c.770]

    На рис. 5.31 показана фотографическая пластинка со спектрами Рамана хорошо видны линии спектра ртути неизменной частоты, так как всегда паразитное рассеянное излучение ртути достигает спектрографа. Кроме того, можно различить серию линий Рамана с длинноволновой стороны каждой из более сильных линий ртути. Спектр четы-реххлористсго углерода показывает также антистоксовы линии в коротковолновой стороне. [c.109]

    Перечисленные группы примесей далеко не исчерпывают всех нормируемых в водах компонентов. К ним относятся также соли, металлы, газы и другие неорганические соединения, не дающие заметной флуоресценции. Их надо определять с использованием других механизмов взаимодействия света с веществом, например механизма комбинационного рассеяния. Однако сечение обычного спонтанного комбинационного рассеяния в 10 раз меньше сечения флуоресценции, и, следовательно, такие слабые сигналы не могут быть обнаружены на фоне флуоресценции РОВ и фитопланктона. Надо переходить в более коротковолновую, антистоксову область (относительно частоты возбуждающего излучения) и значительно увеличивать интенсивность сигнала, исполь пя методы когерентной спектроскопии. Вторая проблема, стоящая перед л,1. срной диагностикой водных сред, состоит в переходе от локальных измерений в пределах замкнутых водоемов к широкомасштабному глобальному мониторингу Мирового океана и внутренних водоемов. [c.166]

    Stokes lines (S) спектр, стоксовы линии — линии комбинационного рассеяния, расположенные со стороны более низких частот (более интенсивные, чем антистоксовы линии). [c.684]

    Из специализированных лазерных приборов кратко рассмотрим спектрометр когерентного антистоксового рассеяния света, первый коммерческий образец которого представлен на рынке фирмой Квантель [12]. Прибор состоит из лазера на гранате, лазера на красителе с перестройкой и дополнительных приспособлений. Обеспечивается непрерывное сканирование в интервале 200 см с разрешением 0,1 см . В этом методе спектр получается под действием на образец двух лазерных полей, разность частот которых совпадает с частотой колебаний молекул, а направления распространения удовлетворяют определенным условиям. Отличительная особенность КР в такой ситуации — его высокая интенсивность, превосходящая в 10 —10 раз интенсивность обычного КР. Продемонстрированы перспективы метода для определения малых содержаний молекул в газах, изучения восприимчивости и времени релаксации, измерения температуры. [c.15]


Смотреть страницы где упоминается термин Антистоксова частота рассеяния: [c.174]    [c.174]    [c.564]    [c.612]    [c.260]    [c.311]    [c.239]    [c.153]    [c.22]    [c.23]    [c.773]    [c.437]    [c.684]   
Квантовая механика и квантовая химия (2001) -- [ c.174 ]

Квантовая механика и квантовая химия (2001) -- [ c.174 ]




ПОИСК







© 2025 chem21.info Реклама на сайте