Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходы комбинационные

Рис. 10. Схема переходов молекул при появлении линий комбинационного рассеяния Рис. 10. <a href="/info/50641">Схема переходов</a> молекул при <a href="/info/1104590">появлении линий</a> комбинационного рассеяния

    Схема переходов молекулы при поглощении квантов света и при переходе в низшее энергетическое состояние с излучением квантов (рис. 10) поясняет появление линий в спектре комбинационного рассеяния. Измерение частот линий в спектре комбинационного рассеяния (стоксовых линий) дает возможность определять частоту колебания атомов в молекуле, т. е. молекулярную константу  [c.17]

    Молекулярная спектроскопия. Электронные переходы, колебательные переходы и вращательные переходы. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния. Спектр поглощения. Закон Беера и молярный коэффициент экстинкции. Сопряженные полнены. [c.551]

    Молекулы имеют электронные энергетические уровни, колебательные энергетические уровни и вращательные энергетические уровни. Переходы между вращательными уровнями попадают в микроволновую область спектра переходы между колебательными уровнями-в инфракрасную область, а переходы между электронными уровнями-в видимую и ультрафиолетовую области спектра. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния используются для наблюдения внутримолекулярных колебательных переходов. Поглощение света молекулами в видимой и ультрафиолетовой частях спектра обусловлено электронными переходами. График зависимости интенсивности этого поглощения от длины волны света называется спектром поглощения. [c.596]

    Переходы какого типа наблюдаются при помощи спектроскопии комбинационного рассеяния  [c.597]

    Схема происхождения спектров комбинационного рассеяния приведена на рис. 67. Частоты стоксовых и антистоксовых линий представляют собой комбинацию частоты релеевской линии с частотой перехода между уровнями пит молекулы V" = AE /h . Согласно (43.4) и (44.2) [c.146]

    Возможность непосредственно наблюдать вращательные и колебательные переходы в области видимого света основывается на открытии Раманом и Мандельштамом явления комбинационного рассеяния света. При прохождении монохроматического света через вещество в спектре рассеянного света наряду с линией излучения источника света появляются также линии с более высокими и более низкими частотами. Эта разность частот относительно основной частоты источника света соответствует изменению энергии при колебательных переходах. Основное достоинство спектроскопии комбинационного рассеяния (КР) состоит в том, что с ее помощью можно точно и просто определять собственные частоты колебаний молекулы. При этом можно различить валентные и деформационные колебания. Последние возможны у многоатомных нелинейных молекул. Так, например, молекула воды НгО имеет два валентных колебания [c.68]


    При когерентном рассеянии света молекулами, описываемом законом Рэлея (см. уравнение (467)), часть энергии излучения переходит в энергии вращательного и колебательного состояния молекул. Поэтому в спектре рассеянного света наряду с частотой линии возбуждающего света наблюдаются линии с большими и меньшими частотами, соответствующие выделению и поглощению энергии молекулами. Поскольку при комнатной температуре преобладает основное колебательное состояние, происходит только поглощение энергии. Линии получаемого таким образол спектра комбинационного рассеяния (КР) часто значительно сдвинуты по сравнению с линиями падающего на вещество света в сторону больших длин волн. В то время как ИК-спектр связан с изменением дипольного момента молекул, появление линий в КР-спектре связано с изменением поляризуемости молекул. Поэтому линии спектра [c.354]

    Колебательные спектры, как и вращательные, лежат в ИК-области. Однако их можно изучать, пользуясь явлением комбинационного рассеивания (КРС) видимого света. КРС-спектро-скопия основана на рассеивании падающего на вещество света с изменением его частоты. Это происходит либо вследствие потери падающим на вещество фотоном части энергии с соответствующим переходом поглощающей молекулы на более высокий колебательный уровень, либо вследствие перехода возбужденной молекулы на основной колебательный уровень с передачей энергии фотону. В результате частота рассеиваемого света уменьшается или увеличивается на величину, отвечающую разности энергий между основным и возбужденным колебательными уровнями. В спектре КРС кроме линии, соответствующей обычно.му упругому рассеиванию и имеющей такую же частоту, как и падающий свет, появляются симметрично расположенные по отношению к ней линии других частот. [c.52]

    Молекулярным спектром называют совокупность полос или линий в оптической (УФ, видимой, ИК) и микроволновой (МВ) областях электромагнитных волн, возникающих в результате изменения энергии молекул при поглощении, рассеянии или испускании электромагнитного излучения. Соответственно различают молекулярные спектры поглощения (абсорбционные), комбинационного рассеяния (КР) и испускания (эмиссионные). Молекулярные спектры, наблюдаемые в оптической области, называют оптическими, в МВ — микроволновыми. Вид и структура спектров определяются строением, энергетическими и электрическими свойствами молекул. Частоты молекулярных спектров соответствуют квантовым переходам между различными энергетическими уровнями энергии и подчиняются соотношению (13.3). [c.241]

    Спектроскопия комбинационного рассеяния (КР), так же как ИК Спектроскопия, имеет дело с колебательными и вращательными переходами. Однако природа возникновения спектров КР иная. Данные спектроскопии КР часто дополняют информацию, полученную при изучении ИК-спектров, что расширяет сведения о строении химических соединений. Исходя из классических представлений рассеяние света возникает вследствие колебаний молекулярного диполя, индуцированного переменным электрическим полем падающей на вещество электромагнитной волны. Правилами отбора предусматривается, что колебание активно в спектре КР, если оно сопровождается изменением поляризуемости молекулы, тогда как условием возникновения ИК-спектра поглощения является изменение собственного дипольного момента при колебании молекулы. [c.170]

    В заключение отметим, что существуют эффекты, в некоторой степени напоминающие опалесценцию (рассеяние света),— флуоресценция и комбинационное рассеяние. В отличие от рассеяния света при флуоресценции и комбинационном рассеянии переходы электронов на различные энер- [c.161]

    Как и инфракрасные спектры, спектры комбинационного рассеяния (КР) возникают вследствие изменения колебательного состояния молекул при поглощении световых квантов. Однако вероятности переходов между колебательными уровнями в явлениях рассеяния видимого света и поглощения инфракрасной радиации существенно различаются. В то время как интенсивности инфракрасных полос поглощения определяются значениями производной от момента электрического диполя по колебательной координате, яркость линий комбинационного рассеяния зависит от величины аналогичной производной поляризуемости. Поэтому могут оказаться различными не только контуры спектрограмм, но и наборы частот колебания, неактивные в инфракрасных спектрах, обычно дают весьма яркие линии в спектрах КР, и наоборот. Вследствие этого для полной характеристики колебаний молекул требуется совместное исследование инфракрасных спектров и спектров КР, тогда как для структурного анализа часто (исключая некоторые специаль- [c.35]


    Схема энергетических переходов молекулы при поглощении монохроматического излучения и при рассеянии излучения молекулой представлена на рис. 11. Так как интенсивность линий зависит от количества молекул, поглощающих энергию монохроматического излучения, то антистоксовые линии в спектре комбинационного [c.22]

    Если использовать излучение порядка 0,1 — 100 см (дальнюю ИК и микроволновую область), то = А кол = 0 и проявляются чисто вращательные спектры. Колебательные и вращательные переходы можно наблюдать в спектрах поглощения, испускания н комбинационного рассеяния. При этом спектры КР наблюдаются не в ИК- и микроволновой, а в видимой области спектра, что существенно меняет технику эксперимента. [c.267]

    В отличие от процесса поглощения при возбуждении спектров комбинационного рассеяния переходы осуществляются между колебательным уровнем и уровнем ме-тастабильного состояния z (рис. 5.12,6). [c.221]

    Спектры комбинационного рассеяния во многом подобны инфракрасным спектрам, так как и те и другие обусловлены колебательными, а иногда и вращательными переходами в веществе. Но правила отбора, [c.339]

    Важным преимуществом при использовании спектров комбинационного рассеяния является возможность работать в видимой или в ближней ультрафиолетовой области, тогда как при использовании тех же переходов в абсорбционной спектроскопии нужно использовать менее удобную инфракрасную технику. Особенно сильно сказывается это преимущество, когда соответствующие инфракрасные полосы имеют Я > 20—25 мк. Действительно, в спектрах комбинационного рассеяния интерес представляет не абсолютное значение частоты (или длины волн) линии, а разность частот спутника и основной несмещенной линии, которая соответствует возбуждающему свету. Поэтому, выбирая удобную длину волны для возбуждения, получаем в той же области и спектр комбинационного рассеяния. Длина волны спутников при этом, конечно, зависит от длины волны возбуждающего света, но разность частот во всех случаях остается для данного вещества строго постоянной. [c.340]

    Ценные сведения о конформациях парафинов дают инфракрасные спектры и спектры комбинационного рассеяния. В дальнейшем мы на более подходящих примерах посмотрим, как именно изменяются эти спектры в зависимости от конформационных особенностей вещества. Сейчас отмети.м лишь, что при замораживании вещества, т. е. при переходе из жидкого состояния в твердое, инфракрасные спектры углеводородов обычно сильно упрощаются, число линий в них уменьшается. Это свидетельствует о том, что в кристалле обычно существует только одна конформация, дающая свои линии в спектрах КР и ИК. Так, изучение обоих типов спектров н-гексана показало, что при замораживании спектр сильно упрощается. [c.233]

    В общем случае для трехмерной молекулы, состоящей из п атомов, в спектре комбинационного рассеяния должно наблюдаться не более Зп — 6 линий, что соответствует числу возможных для молекулы нормальных колебаний. В спектре твердого дихлорэтана наблюдается меньше линий, чем в жидком состоянии (рис. 36) лишние линии при переходе в жидкое состояние связаны с вкладом новых конформеров. [c.242]

    Модель жесткий ротатор — гармонический осциллятор , однако, является лишь первым приближением. Хотя эта модель хорошо объясняет основные свойства инфракрасных и комбинационных спектров, для описания некоторых тонких деталей спектров она недостаточна. Модель не годится для описания энергетических уровней -молекулы с высокими квантовыми числами, в особенности состояний, близких к диссоциации (в приближении гармонических колебаний нельзя объяснить и самого явления диссоциации). Поэтому, если для сравнительно низких температур, когда переходы происходят практически только между состояниями с небольшими квантовыми числами, использование модели жесткий ротатор — гармонический осциллятор допустимо, то для высоких температур необходимо пользоваться более строгими приближениями. [c.215]

    Спектры комбинационного рассеяния. Не только ИК-спектры поглощения дают способ исследования вращения и колебания молекул. Вращательно-колебательные переходы ярко проявляются в спектрах комбинационного рассеяния (КР-спектры) и наблюдаются в видимой области света. Комбинационное рассеяние света заключается в изменении частоты рассеиваемого веществом света. Для получения КР-спектра образец (рис, 78) освещают монохроматическим светом. Рассеянное излучение, возникающее под прямым углом к падающему свету, вводят в спектрограф и изучают возникающий спектр комбинационного рассеяния. [c.179]

    Нормальные и характеристические колебания. Водородная связь X—Н... влияет на внутримолекулярные колебания и приводит к появлению новых колебательных степеней свободы, что находит отражение в инфракрасных (ИК) спектрах и спектрах комбинационного рассеяния (КР) света. Как известно, молекула, состоящая из и атомов, имеет 3 степеней свободы, из которых для нелинейных молекул 6, а для линейных — 5 внешних степеней свободы связаны с поступательным и вращательным движениями молекулы как целого. Остальные 3 —6 или Зл — 5 внутренние степени свободы связаны со всевозможными колебаниями атомных ядер в молекулах. Колебательное движение может быть описано с помощью естественных координат определяющих отклонения межъядерных расстояний и валентных углов относительно равновесного положения. При равновесной конфигурации атомных ядер все естественные координаты Х обращаются в нуль. Колебания атомных ядер в молекулах взаимосвязаны, поэтому изменения естественных координат атомных ядер также взаимосвязаны. Если считать колебания гармоническими, то во многих случаях с помощью методов, разработанных механикой малых колебаний молекул, приближенно можно осуществить переход от естественных координат X. к нормальным координатам Q . [c.64]

    Энергия колебательных переходов в молекулах сравнима с энергией квантов излучения в области инфракрасного излучения. Инфракрасный (ИК) спектр и спектр комбинационного рассеяния (КР) молекул химических соединений являются одними из важных характеристик веществ. Однако, поскольку спектры имеют различную природу, интенсивность проявления в них одних и тех же колебаний различна. [c.756]

    Исследование фазовых переходов в опоях ржавчины методом спектроскопии комбинационного рассеивания 25 [c.29]

    Колебательные спектры экспериментально наблюдаются как ИК-спектры и спектры комбинационного рассеяния. Эти два вида спектров имеют различную физическую сущность. ИК-спектры наблюдаются в результате разрешенного правилами отбора перехода молекулы вещества с одного энергетического уровня на другое. В коррозионных исследованиях обычно имеют дело с наблюдаемыми ИК-спектрами поглощения, получаемыми в результате перехода молекулы с уровня, имеющего меньшую энергию, на уровень с большей энергией. Спектры комбинационного рассеяния возникают при электронной поляризации, вызванной воздействием ультрафиолетового или видимого излучения. [c.199]

    Анализ спектра ЯМР системы АБХ. Изучение конформаци-онного равновесия многих подвижных циклических систем проводилось на основании анализа спе 1 ра X -части ВХ или аналогичных ей систем (типа АгВгХ). Система АВХ образована тремя магнитно-неэквива-лентными ядрами, два из которых (А и В) имеют Vo сигнал третьего ядра X отделен от двух других расстоянием, во много раз превышающим константы спин-спинового взаимодействия между ядрами. Вид теоретического спектра системы АВХ представлен на рис.1. Между восемью энергетическими уровнями оказываются возможными пятнадцать переходов [12]. Т1Ш из этих переходов комбинационные, причем один из них (линия 13) имеет нулевую интенсивность, а два других (линии 14 и 15) наблвдаются в X -части спектра лить при очень малых значениях химического сдвига б в. Поэтоцу X -часть систаш АВХ часто представляет собой квартет. [c.7]

    Спектроскопия комбинационного рассеяния (КР) — это раздел оптической спектроскопии, изучающий рассеяние монохроматического света, которое сопровождается изменением его частоты. Комбинационное рассеяние было открыто одновременно и независимо советскими физиками Л. И. Мандельштамом и Г. С. Ландсбергом и индийскими физиками В. Раманом и С. Кришнаном. Причина комбинационного рассеяния — неупругое соударение кванта света с молекулой. При этом часть энергии может уйти на возбуждение молекулы, которая перейдет на более высокий уровень. Тогда энергия рассеянного света будет меньше энергии падающего света на величину энергии перехода. В спектре рассеянного света кроме линии падающего света с волновым числом vo появляются линии с волновым числом Vlстоксовы линии). Энергия перехода характеризуется разностью Av,=vo —VI. Если молекула находилась в возбужденном состоянии, то при соударении с квантом света она может отдать ему свою энергию возбуждения и перейти в основное состояние. Тогда энергия рассеянного излучения возрастает и в [c.247]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Анализ спектров ЯМР систем нескольких почти эквивалентных ядер в частном виде (т. е. при заданных химических сдвигах и КССВ) удобнее всего решать с помощью ЭВМ. Существуют стандартные программы для таких расчетов. Главная трудность наблюдения и расшифровки спектров систем почти эквивалентных ядер состоит в быстром увеличении числа линий расположенных на узком участке. Причина состоит в появлении так называемых комбинационных линий. Они возникают в результате таких переходов, при которых спиновыми состояниями меняются одновременно несколько ядер. Вероятности таких переходов, как правило, невелики, но их вклад при увеличении числа ядер быстро растет. Это обусловлено быстрым ростом количества комбинационных переходов по сравнению с количеством чистых переходов, т. е. таких, при которых меняется спиновое состояние только одного ядра (табл. 4 приложения). Количество типов спиновых систем также быстро растет с увеличением числа ядер в системе. В результате близкого расположения большого числа линий на участке спектра и недостаточно высокой разрешающей способности спектрометра в экспериментально наблюдаемом спектре получается бесструктурная полоса, огибающая большое число пиков, вследствие чего расшифровка спектра становится невозможной. Особенно часто такая картина возникает при съемке спектров ПМР высших гомологов углеводородов либо многоядерных алициклических соединений (терпены, стероиды). Выходом из этого положения может быть измерение спектров на приборе с большей рабочей частотой либо использование лантаноидных сдвигающих реагентов, вызывающих растяжение спектра. [c.91]

    Если расстояние между уровнями хлрактеризоиать волновым числом со — = 1/) "= v/ Ле/Яс (где с — скорость света, % — длина волны), то электронным переходам будет отвечать величина <о порядка дссяткон тысяч см-1, расстояния между колебательными уровнями — порядка тысячи см-1, между вращательными — несколько см"1. Переходы между колебательными и вращательными уровнями проявляются в инфракрасных спектрах и спектрах комбинационного рассеяния. [c.215]

    Как видно из рис. 46, в отсутствие Л-удвоения комбинационный дефект е равен нулю. Из величины е можно определить величину Л-удвоения. Из рис. 46 также очевидно, что первой линией Я-вет-ви является линия Р 2), а неЯ(1), как в случае перехода 2 — 2, так как верхнее состояние начинается с уровня / = 1. По той же причине первой линией Q-ветви является линия Q(l), а первой линией R-ветвн — как и прежде, линия R 0). Примером перехода Ш— 2 может служить полоса свободного радикала ВН, приведенная на рис. 47 в спектре хорошо видны три ветви. [c.79]

    II], гл, I, и более поздний обзор Стойчева [124]). Спектры комбинационного рассеяния свободных радикалов до сих пор не получены, но микроволновые спектры двух довольно долго живущих радикалов (СРг [114] и S1F2 [117]) исследовались. Все наблюдавшиеся переходы соответствуют правилам отбора [c.155]

    Спектры комбинационного рассеяния (КР) и ИК-поглощения взаимно дополняют друг друга [2] благодаря развитию современных приборов (с лазерными источниками возбуждения) иолученне спектров КР постепенно превращается в стандартную процедуру. Однако составление корреляционных диаграмм для отнесения частот колебаний по-прежнему остается нелегким делом. Вообще говоря, возбуждение комбинационного перехода определяется изменением поляризуемости связи, тогда как ИК-поглощение определяется дипольного момента [c.201]


Смотреть страницы где упоминается термин Переходы комбинационные: [c.306]    [c.529]    [c.147]    [c.147]    [c.212]    [c.214]    [c.221]    [c.79]    [c.155]    [c.36]    [c.129]    [c.267]   
Основы квантовой химии (1979) -- [ c.380 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллы. Фазовые переходы Стрижевский. С температурной зависимости интенсивности комбинационного рассеяния света в кристаллической среде

Правила отбора для спектральных переходов комбинационного рассеяния



© 2025 chem21.info Реклама на сайте