Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача жидкость жидкост

    Елен ков Д., Теор. основы хим. технол., 1, 158 (1967). Влияние добавок поверхностно-активных веществ на массопередачу в системах газ—жидкость и жидкость-жидкость. [c.270]

    ФИЗИЧЕСКАЯ МАССОПЕРЕДАЧА В СИСТЕМАХ ЖИДКОСТЬ — ЖИДКОСТЬ И ЖИДКОСТЬ — ГАЗ [c.194]

    Как это ни парадоксально, но при расчете химических реакторов жидкость — жидкость или жидкость — газ гораздо чаще приходится сталкиваться с обычной физической массопередачей, чем с массопередачей, осложненной химической реакцией. Этот факт является следствием физической природы и механизма влияния химической реакции на скорость процессов переноса. [c.226]


    В системе жидкость — жидкость лимитирующее сопротивление реакционной фазы — явление чрезвычайно редкое. Реакция, как правило, протекает в сплошной фазе. Если коэффициенты молекулярной диффузии переходящего компонента в фазах не сильно отличаются по величине, то коэффициент массоотдачи в сплошной фазе в 6—10 раз больше, чем коэффициент массоотдачи в дисперсной фазе [6]. Лимитирующее сопротивление сплошной фазы в этих условиях имеет место при величине коэффициента распределения <0,1. Если при этом учесть увеличение скорости массопередачи в сплошной фазе под воздействием химической реакции, то становится очевидным, что лимитирующее сопротивление реакционной фазы может иметь место лишь при очень малых значениях коэффициента распределения (г ) 10 ). Столь низкие значения коэффициентов распределения в системе жидкость — жидкость встречаются сравнительно редко. [c.227]

    Вычисление коэффициентов массопередачи в системах жидкость — жидкость или н<идкость — газ в общем случае сводится к решению двух самостоятельных задач. [c.234]

    В подавляющем большинстве двухфазных жидкостных реакторов жидкость—жидкость или жидкость—газ химическое взаимодействие происходит в сплошной фазе. Поэтому наибольший интерес при расчете скорости массопередачи, осложненной химической реакцией, представляет случай, когда процесс массопередачи лимитируется сопротивлением сплошной реакционной фазы. [c.237]

    Как было отмечено в предыдущей главе (см. раздел 11.6), формула Хигби дает хорошие результаты при расчете массопередачи в системе жидкость—газ. Применительно же к системе жидкость— жидкость в ряде случаев наблюдаются значительные отклонения величин, вычисленных по формуле Хигби, от данных эксперимента. [c.240]

    В процессе массопередачи концентрация жидкости на тарелке меняется от входа жидкости на тарелку до ее выхода. Наилучшие условия разделения достигались бы, если на тарелке не происходило бы сме- [c.273]

    Гомогенная реакция в одной и более фазах Гетерогенная реакция на границе раздела двух фаз Гомогенная реакция с удалением продукта (например, экстракция жидкости жидкостью, стр. 157) Реакция на поверхности твердого катализатора (стр. 171) Массопередача с химической реакцией(например, химическая абсорбция газа, стр. 160) Реакции в слое псевдо-ожиженного твердого тела (например, сжигание углерода, стр. 181) [c.153]


    Замечено, что р является здесь средней величиной внешней поверхности частиц и что возможны большие местные отклонения от этой средней величины. Для определения величины р в случае массопередачи между жидкостью и частицами в псевдоожиженном слое были использованы экспериментальные данные [c.173]

    С одной стороны, при массопередаче через жидкость як 10 см - сек и Хо = 10 см. Следовательно [c.374]

    Дифференциально-контактные и ступенчатые экстракторы без перемешивающих устройств (распылительные, тарельчатые, ситчатые колонные экстракторы) отличаются сравнительно низкой интенсивностью массопередачи. Это объясняется тем, что в системах жидкость — жидкость разность плотностей фаз значительно ниже, чем в системах газ — жидкость или пар — жидкость. Поэтому собственная энергия потоков, используемая для контактирования фаз, в экстракционных аппаратах без перемешивающих устройств недостаточна для преодоления сил [c.649]

    С целью установления влияния барботирующего газа на массопередачу из жидкости к твердым частицам при восходящем потоке были проведены исследования по адсорбции адипиновой кислоты из водного раствора активированным углем с эквивалентным диаметром частиц 3,2 и 4,2 мм. Высота слоя в колонне диаметром 50 мм изменялась от 0,1 до 2 м. Приведенные скорости газа и жидкости лежали в следующих пределах = 0,03 ч-4-0,23 м/с оУд, = (0,78 4-3,8) 10 м/с. Исследования показали, что без подачи газа массоперенос описывается уравнением (111.32). Однако введение в слой затопленной насадки газа не привело к существенному изменению массопереноса, о чем свидетельствуют данные рис. 37. Представленные здесь результаты опытов показы- [c.76]

    Подбор и расположение материала в книге таковы, что в ней последовательно рассмотрены основные типовые процессы химической технологии (гидродинамические, тепловые и массообменные), причем основное внимание уделено течению жидкостей, теплопередаче и расчету теплообменников, основам массопередачи в системах газ — жидкость, пар — жидкость, и жидкость — жидкость. Специальная глава посвящена аппаратам колонного типа ввиду их широкого распространения в химической промышленности. В книгу включены также главы, имеющие общее значение для расчета различных процессов. В них рассматриваются некоторые математические методы, используемые в технико-химических расчетах, способы составления материальных балансов и ведения процесса в стационарном и нестационарном режимах. [c.11]

    Этими же принципами" руководствуются и в случае процесса жидкость — жидкость (например, экстракция). Жидкость, которая оказывает меньшее сопротивление массопередаче, пропускается в виде капель через сплошную жидкую фазу. [c.557]

    Подобно теплопередаче массопередача представляет собой сложный процесс, включающий перенос вещества (массы) в пределах одной фазы, перенос через поверхность раздела фаз и его перенос в пределах другой фазы. Как известно, при теплопередаче обменивающиеся теплом среды в большинстве случаев разделены твердой стенкой, в то время как массопередача происходит обычно через границу раздела соприкасающихся фаз. Зта граница может быть либо подвижной (массопередача в системах газ—жидкость или пар—жидкость, жидкость—жидкость), либо неподвижной (массопередача с твердой фазой). [c.383]

    На рис. Х-5 приведена схема, поясняющая процесс массопередачи между жидкостью и газом (паром) или между двумя жидкостями. Фазы движутся с некоторой скоростью [c.395]

    Перенос вещества в неподвижном слое твердого материала представляет собой неустановившийся процесс, что обусловливает специфический характер процессов массопередачи с твердой фазой по сравнению с массопередачей в системах газ (пар) — жидкость и жидкость—жидкость. [c.430]

    В реальных условиях внешняя массопередача в жидкостях и газах является сложным процессом. Она может включать в себя, кроме молекулярной диффузии, перенос вещества благодаря наличию потоков. Такой процесс называется конвективной диффузией. [c.256]

Рис. У1-13. Аппарат Леви для определения коэффициентов массопередачи в системе жидкость — жидкость Рис. У1-13. <a href="/info/147481">Аппарат Леви</a> для <a href="/info/1222808">определения коэффициентов массопередачи</a> в <a href="/info/21983">системе жидкость</a> — жидкость
    В настоящее время в литературе опубликовано много работ, посвященных изучению массопередачи в системах жидкость—жидкость. В большинстве работ результаты исследований даются в графическом виде [2, 15, 51, 58]. В немногих работах обобщены коэффициенты массопередачи. Исследования в экстракторе типа смеситель— отстойник были проведены Берестовым и Романковым [4] (размеры сосуда Я = Z) = 0,096 м, диаметр пропеллерной мешалки d = = 0,032 м, шаг S = d). Авторы использовали девять систем, в том числе изоамилацетат—уксусная кислота—вода, толуол—уксусная кислота—вода, толуол—ацетон—вода и толуол—фенол—вода. Результаты исследований были обобщены в виде уравнения [c.327]


    При анализе массообменных процессов будем исходить из условия состояния границы контакта фаз, что существенно различает механизмы процессов переноса массы. По этому принципу массообменные процессы подразделяют на массопередачу в системах со свободной границей раздела фаз (газ-жидкость, пар-жидкость, жидкость-жидкость), массопередачу в системах с неподвижной поверхностью контакта фаз (системы газ-твердое тело, пар-твердое тело, жидкость-твердое тело) и массопередачу через полупроницаемые перегородки (мембраны). [c.9]

    Диспергирование в системах жидкость—жидкость, газ-жидкость применяется для создания развитых межфазных поверхностей Р, обеспечивающих высокую интенсивность тепло- и массообменных процессов. В этом случае в пропускной способности кР поверхностной стадии процесса переноса прежде всего существенно увеличивается Р кроме того, диспергирование часто сопровождается также повыщением коэффициента тепло-или массопередачи к. Для указанных выше дисперсных систем размер капель (пузырьков), их распределение по размерам и межфазная поверхность являются важными технологическими факторами при организации процессов переноса и расчете тепло- и массообменных аппаратов. [c.461]

    Согласно теории Уитмана и Льюиса, в ядре потока концентрахщя постоянная и процесс переноса описывается одномерным стационарным уравнением молекулярной диффузии в тонких пленках при условии фазового равновесия на границе раздела жидкость - жидкость или жидкость - газ. Скорость массопередачи по каждой из фаз определяется выражением (4.3), в котором частные коэффициенты массопередачи равны К1 =1)1/61 и К2 =02182, где >1, /)2, 51, 2 - коэффициенты диффузии и поперечные размеры пленок соответствующих фаз (см. рис. 4.1). Пленочная теория не дает методов для определения толщин пленок 5, и 62, которые зависят от физико-химических свойств жидкостей и гидродинамических условий протекаемых процессов. [c.173]

    Массопередача при лимитирующем сопротивлении сплошной фазы. Экспериментальное изучение скоростп массопередачи в сплошной фазе в системах жидкость — жидкость и жидг. ость — газ явилось объектом многочисленных исследований [41, 72, 75, 117—127]. Сопоставление экспериментальных данных с величинами коэффициентов массопередачи, вычисленными по различным моделям, показывает, что формулы (11.76) [c.222]

    Необходимо отметить, что расчетные формулы, приведенные в этой главе, в равной мере примепимы для расчета массопередачи и теплопередачи между частицей дисперсной фазы и сплошной фазой как в системе жидкость — жидкость, так и в системе жидкость — газ. Хотя в ходе изложения мы пспользовалп различные термины (капля, пузырь, частпца), одпако тот илп иной термин означает лишь, что донная формула на практике чаще может быть применена для расчета процессов переноса в той плп иной системе. Так, например, формула Кронига и Бринка (11.38) чаще используется для расчета переноса в жпдкой капле, хотя она с таклм же успехом может служить и для расчета процессов, протекающих внутри газового пузыря. Аналогичным образом формула (11.77) применима для [c.222]

    Формула (12.95) также может быть рекомендована для вычисления коэффициентов массопередачи в системе жидкость—газ. Более общее выражение, пригодное для аналогичных расчетов в системе жидкость—жидкость, было выведено Броунштейном и Фишбейном [61]. Авторы решали задачу в рамках теории диффузионного пограничного слоя, используя решение гидродинамической задачи, полученное Хамилеком и Джонсоном [54] для интервала изменения значений критерия Рейнольдса О <[ Ке < 80. Распределение концентраций переходящего компонента и хемосорбента в диффузионном пограничном слое описы- . [c.241]

    Для систем жидкость—жидкость в последнее время установлено, что массопередача может происходить нетолько путем диффузии, но также и путем спонтанно проходящих перемещений, называемых спонтанной межфазной турбулентностью или спонтанной поверхностной активностью. В случае появления спонтанной турбулентности массопередача между фазами проходит значительно интенсивнее, чем это следует из законов молекулярной диффузии, но в отличие от конвективной диффузии межфазная турбулентность возникает спонтанно без малейшего перемешивания жидкости извне. [c.56]

    За период, истекший после первого издания, основные идеи, высказанные ранее при анализе процессов массопередачи, получили дальнейшее развитие. Это прежде всего относится к рассмотрению явлений турбулентного переноса в двухфазных системах газ — жидкость, пар—жидкость, жидкость — жидкость. Явления турбулентного переноса и связанные с ними эффекты продольного и радиального перемешивания жидкостей и газов привлекли за последнее время внимание почти всех исследователей, занимаюш,ихся изучением процессов химической технологии. [c.3]

    При использовании методов расчета по теоретическим тарелкам учет изменения потоков пара и жидкости по ступеням разделения принципиально не представляет трудности, поскольку при этом составы однозначно определяются условиями равновесия и рабочей линией процесса. Иначе обстоит дело при расчетах разделения с использованием диффузионного механизма массообмена. Если при разделении близкокипящих смесей можно допустить наличие эквимолярной массопередачи между жидкостью и паром, то при значительной разнице в теплотах испарения разделяемых компонентов необходимо уже учитывать пеэквимолярность массопередачи (табл. 14, модель 2). [c.303]

    Все гравитационные экстракторы отличаются простотой конструкции, обусловленной отсутствием движущихся частей. Соответственно стоимость этих аппаратов и расходы, связанные с их эксплуатацией, относительно невелики. Однако в большинстве случаев (исключая процессы обработки сргстем жидкость — жидкость с низким межфазным натяжением) интенсивность массопередачи в гравитационных экстракторах низка. Это объясняется тем, что для систем жидкость — жидкость разность плотностей фаз значительно меньше, чем для систем пар (газ) — жидкость и обычно педостаточна для. тонкого диспергирования одной жидкой фазы в другой, необходимого для создания значительной поверхности контакта фаз. Гравитационные экстракторы мало пригодны для работы с большими соотношениями расходов фаз. [c.543]

    На основании анализа гидродинамических условий и условий массопередачи, сс-ответствующих точке инверсии в насадочных колоннах, при абсорбции газов, ректификации жидкостей и экстракции жидкостей жидкостями В. В. Кафаровым было пред южено следующее уравнение  [c.494]

    Основные исследования коэффициентов массопередачи в системе жидкость—жидкость многими учеными сначала проводились в так называемых диффузионных ячейках [12, 27, 77], где точно определена межфазная поверхность процесса и относительная скорость движения обеих фаз. На рпс. 1-13 представлен такой аппарат Левп [42]. Поверхность раздела фаз имеет форму кольца и расположена между перегородками 9 и 10. У каждой мешалки свой привод, поэтому можно регулировать турбулентность в обеих фазах. Массообмен может осуществляться в неустановившемся, периодическом процессе или, в случае течения двух фаз, в непрерывном процессе. [c.326]

    К — коэффициент массопередачи в жидкости, мг-экв/час X X мг-экв1л а — поверхность частиц ионита. м /м р — удельный вес ионита, г/сл  [c.129]

    К—коэффициент массопередачи в жидкости, мг-экв/ч-м X X мг-окв1л а — поверхность частиц ионита, м 1м р —плотность ионита, г/см  [c.174]


Библиография для Массопередача жидкость жидкост: [c.660]    [c.208]    [c.372]   
Смотреть страницы где упоминается термин Массопередача жидкость жидкост: [c.166]    [c.186]    [c.67]    [c.174]    [c.544]    [c.198]    [c.372]    [c.535]   
Вибрационные массообменные аппараты (1980) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2024 chem21.info Реклама на сайте