Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбенты вре.чя защитного действия

    Общепринятой моделью динамики адсорбции в неподвижном слое является модель фронтальной отработки слоя адсорбента [3]. После насыщения лобового слоя адсорбция вещества из потока в нем прекращается, и поток проходит этот участок без изменения концентрации. Время работы слоя до насыщения лобового участка принято называть периодом формирования фронта адсорбции. После этого начинается второй период, для которого характерна неизменная форма выходной кривой. Концентрационный фронт перемещается с постоянной скоростью вдоль слоя, что указывает на стационарный режим процесса. При этом существует область, называемая работающим слоем или зоной массопередачи, в которой концентрация падает от начальной практически до нулевой. Наличие такой зоны свидетельствует о существовании внутри- и внешнедиффузионного сопротивлений массопереносу. Инженерные методы расчета, допускающие существование стационарного фронта, широко применяются на практике. Для расчета адсорбционного аппарата в этом случае используют уравнение, описывающее время защитного действия слоя в зависимости от его длины, и общий закон массопередачи в слое. [c.69]


    Адсорбенты характеризуются также временем защитного действия, под которым понимают промежуток времени, в течение которого концентрация поглощаемых компонентов на выходе из слоя адсорбента не изменяется. При большем времени работы адсорбента происходит проскок поглощаемых компонентов, связанный с исчерпанием активности адсорбента. В этом случае необходима регенерация или замена адсорбента. [c.316]

    Впервые это уравнение было выведено Н. А. Шиловым применительно к времени защитного действия слоя адсорбента в противогазах. [c.392]

    Исчерпание адсорбционной способности — проскок определяет время защитного действия адсорбента по отношению к данному компоненту. Количество вещества, адсорбируемого поверхностью, определяется состоянием равновесия и зависит от природы адсорбента и адсорбируемого вещества, концентрации последнего в исходной смеси, температуры процесса, а при адсорбции газовой фазы и от давления. [c.275]

    Итак, во всех случаях время защитного действия адсорбента р оказывается прямо пропорциональным длине слоя Я, т. е. количеству засыпанного сорбента 12291. Такая закономерность была выведена Шиловым [2281 для адсорбера с неподвижным слоем в предположении о послойной отработке шихты. В кипящем слое такой послойной отработки нет и вся поглощенная примесь рас-190 [c.190]

    Высота адсорбера. Определение высоты аппарата связано с расчетом высоты / слоя адсорбента при заданном времени т р защитного действия слоя, которое обусловливается технологическими требованиями. Наоборот, при заданной высоте / может быть найдено значение т р, так как величины I и т р связаны между собой уравнением (XIV,4). Из этого уравнения высота слоя [c.579]

    Фронтальная хроматография как динамическая сорбция реализуется следующим образом. Появление разделяемых веществ за слоем сорбента наступает через некоторое время, называемое временем защитного действия. В дальнейшем их концентрация за слоем адсорбента возрастает и достигает исходной концентрации пропускаемого через сорбент раствора. На рис. 28 показано изменение концентрации во времени при выходе веществ из слоя адсорбента (выходная кривая). Если имеется смесь веществ, то в слое сорбента дольше удерживаются те из них, которые лучше сорбируются. В порядке возрастания способности сорбироваться компоненты, представленные на рис. 28, можно расположить в такой последовательности 1—2—3. [c.72]

    Расчет процесса адсорбционной осушки газа сводится к определению требуемого для получения осушенного газа объема адсорбента, длительности защитного действия работающего слоя адсорбента (время до проскока), потери давления при движении газа через адсорбент. [c.274]


    Опытные данные показывают, что процесс адсорбции в кипящем слое характеризуется теми же закономерностями, что и адсорбция в неподвижном слое. Так, время защитного действия слоя меняется прямо пропорционально высоте кипящего слоя. Коэффициент защитного действия адсорбента зависит от скорости газового потока, начальной концентрации газовой смеси и физико-химических свойств системы. [c.539]

    Фактическое время защитного действия т слоя адсорбента длиной Д всегда меньше Разность [c.540]

    Адсорбция 1/53 4/770. См, также Адсорбенты, Адсорбтивы, Адсорбционные методы (процессы) активированная 1/1053, 1054 время защитного действия 1/61 газов 1/797, 905 [c.536]

    Зависимость времени защитного действия от высоты слоя адсорбента. [c.223]

    Теория равновесной адиабатической адсорбции позволяет сделать некоторые важные практические выводы. В случае образования одиночной тепловой волны процесс адсорбции имеет тенденцию протекать независимо от начальной температуры слоя. Это означает, что слой будет нагрет или охлажден газом-носителем до температуры плато к моменту подхода адсорбционной зоны и время защитного действия слоя адсорбента не изменяется при изменении его начальной температуры. Следовательно, в системах, удовлетворяющих условию (,10.56), охлаждение зернистого слоя после его термической регенерации проводить не обязательно. Это позволяет снизить продолжительность цикла, уменьшить расход газа на регенерацию и сократить металлоемкость установки. В ряде практически важных систем, например при осушке газов гидрофильными адсорбентами, условие (10.56) соблюдается на практике. [c.233]

    В тот момент, когда граница зоны массопередачи достигает выхода из слоя и появляется проскок растворенного вещества в фильтрат, весь слой адсорбента состоит нз участка насыщенного до равновесия, и зоны массопередачи. Время работы адсорбционной колонны до проскока адсорбируемого вещества в фильтрат называют временем защитного действия слоя. [c.129]

    Коэффициент к в уравнении (4.56) представляет собой время защитного действия слоя адсорбента высотой в 1 м при бесконечно большой скорости адсорбции. [c.191]

    При бесконечно большой скорости адсорбции и предельно выпуклой изотерме зависимость /пр от Ь должна выражаться прямой линией, проходящей через начало координат (рис. У-5). Однако на практике этот случай не реализуется и всегда существует распределение концентрации по длине слоя (см. рис. У-4). Следовательно, емкость адсорбента в пределах зоны-массопередачи использована не полностью. Действительное время защитного действия слоя будет меньше, чем ол(идаемое в случае бесконечно большой скорости адсорбции. Потеря времени защитного действия связана с длиной неиспользованного слоя /г (см. рис. -4) следующей зависимостью  [c.130]

    Особенности адсорбции растворенных веществ в аппаратах периодического действия с псевдоожиженным слоем связаны с соотношением времени полного перемешивания частиц и времени насыщения адсорбента при различных степенях расширения слоя. На рис. У-9 представлены зависимости времени защитного действия слоя fпp от его длины в при адсорбции л-нитроанилина из водных растворов углем КАД. Из рисунка видно, что характер этих зависимостей различный. При относительно низких скоростях потока, когда степень расширения слоя находится в пределах от 1,25 до 1,9, вполне четко наблюдается потеря времени защитного действия слоя (рис. У-9, а). При скоростях потока, обеспечивающих расширение слоя более двукратного, время защитного действия псевдоожиженного слоя периодического действия, начиная с некоторой длины слоя, изменяется прямо пропорционально длине слоя (рис. У-9,б), причем потеря времени защитного действия практически равна-нулю. [c.137]

    Насыщение первого ряда частиц адсорбента происходит с падающей скоростью, так как по мере приближения к предельному значению йр непрерывно уменьшается движущая сила процесса. Отрезок времени 0, в течение которого достигается предельное насыщение первого ряда частиц, называется периодом формирования фронта адсорбции. Начиная с момента т = То (с высоты в работающей зоне слоя адсорбента создается определенное распределение концентраций в обеих фазах и эта зона (фронт адсорбции) перемещается с постоянной скоростью, оставляя позади себя нарастающую зону насыщенного адсорбента. Очевидно, что при определенной высоте слоя Н = Н- Н.2, газ уйдет с концентрацией поглощаемого компонента == 0. При Н <3 - - Яг конечная концентрация > О, т. е. в потоке газа (или жидкости) наблюдается проскок поглощаемого компонента. Отрезок времени т от момента входа потока в слой адсорбента до его выхода из слоя с концентрацией = О (до начала проскока) называется временем защитного действия. На рис. ХП1-6, б приведена кривая, характеризующая изменение относительной концентрации поглощаемого компонента в потоке с/с по высоте слоя адсорбента или во времени. Эта кривая называется выходной кривой. [c.628]


    Зависимость времени защитного действия х от высоты слоя адсорбента Я применительно к изотерме адсорбции первого типа (см. рис. 1Х-П, й) была определена Н. А. Шиловым. Постулируя постоянство скорости перемещения фронта адсорбции хю и мгновенное поглощение адсорбируемого компонента, можно выразить количество накопленного адсорбата в слое высотой Я и площадью сечения / за время т следующим уравнением, (1 —ед) йр/Я = = откуда % = [йр/Я (1 — ео)]/йУС . [c.628]

    Располагая опытной изотермой равновесия Яр = f (с), можно рассчитать время т методом графического интегрирования. Как видно из этого уравнения, время защитного действия псевдоожиженного слоя адсорбента, как и неподвижного слоя, пропорционально высоте последнего. При этом потеря времени защитного действия псевдоожиженного слоя равна нулю, так как в результате интенсивного перемешивания все частицы адсорбента имеют одинаковую концентрацию адсорбата и, следовательно, отсутствует послойная отработка адсорбента. Данное положение справедливо для газовой адсорбции в случае адсорбции из жидкостей вследствие менее интенсивного перемешивания зерен адсорбента наблюдается некоторая потеря времени защитного действия. [c.630]

    Наиболее распространенными системами среди адсорбентов (носителей) и катализаторов являются двухкомпонентные системы на основе кремниевой кислоты и гидроксида какого-либо металла. На пористую структуру таких смесей оказывают влияние как факторы, воздействующие на индивидуальные оксиды, так и ряд дополнительных, а именно состав смеси, воздействие друг на друга гидроксидов в процессах созревания и обезвоживания. Совместное осаждение приводит к изменению размера глобул, а, следовательно, к изменению характера пористости и значения удельной площади поверхности смешанной системы. При осаждении бинарных систем, одним из компонентов которых является 5102, а другим — гидроксид металла, кристаллизующийся со временем, защитное действие оказывает кремнезем, препятствующий кристаллизации [65]. Бинарные оксидные системы, например алюмосиликагели, применяют в качестве катализаторов процессов химической и нефтеперерабатывающей промышленности [2, 43, 51 ]. [c.78]

    Динамические характеристики процесса адсорбции паров бензола и хлорэтила из потоков осушенного воздуха показывают, что с увеличением степени активирования закономерно возрастает время защитного действия слоя адсорбента по бензолу, одновременно растут динамическая Ац и равновесная динамическая Ар адсорбционные емкости, а также степень использования равновесной динамической адсорбционной емкости (табл. 10.50, 10.51). [c.583]

    Малоизученным остается вопрос о связи кинетики адсорбции в одиночном зерне с макрокинетикой в слое адсорбента, необходимой для определения высоты зоны массопередачи и времени защитного действия его. В монографии приведена аналитическая зависимость коэффициента внутреннего массопереноса от заполнения адсорбционного пространства, сформулирована математическая модель адсорбции в слое адсорбента и получено аналитическое решение указанной задачи. Для ряда моделей изотерм получен аналитический аналог зависимости Жуховиц-кого — Забежинского — Тихонова для времени защитного действия макрослоя адсорбента с учетом внутридиффузионных эффектов. [c.5]

    Пропесс адсорбции в неподвижном слое адсорбента является неустановившимся. поэтому опрелеление времени защитного действия слоя адсорбента и изменения концентрации газа по высоте слоя представляет собой весьма сложную задачу. [c.540]

    При опытном изучении динамики А. через слой адсорбента пропускают газовый или жидкостный поток с заданными характеристиками и исследуют состав выходящего потока кас ф-цию времени. Появление поглощаемого в-ва за слоем наз. проскоком, а время до проскока— временем защитного действия. Зависимость концентрации данного компонента за слоем от времени наз. выходной кривой. Эти кривые служат осн. эксперим. материалом, позволяющим судить о закономерностях динамики А. [c.43]

    В качестве можно, например, выбрать пли минимально допустимую в данном конкретном случае концентрацию адсорбтива, пли концентрацию, минимально определяемую имеющимся анализатором. Выбранный из этих соображений уровень концентрации носит название проскокового . Время Ти отвечающее появлению за слоем адсорбента фиксированной длины проскоковой концентрации адсорбтива, носит название времени защитного действия, пли момента проскока Тпр- [c.223]

    Момент выхода из слоя точки концентрационной кривой с ординатой, равной предельно допустимой (проскоковой) концентрации, соответствует концу времени защитного действия слоя адсорбента. Начиная с этого момента концентрация целевого компонен та на выходе из слоя будет непрерывно повыщаться и достигнет через некоторое время исходного значения. Измеряя концентрацию вещества в газе на выходе из слоя во времени, получают так называемую выходную кривую (рис. 4.11), которую используют, в частности, для определения длины зоны массопсрсдачн Ям- [c.190]

    Псевдоожижеиный слой адсорбента, В псевдоожиженном слое зернистый материал интенсивно перемешивается, поэтому все зерна адсорбента практически одинаково насыщены адсорбтивом в любой момент времени во всем объеме слоя. При этом, как обычно, постулируют, что газовый (или жидкостный) поток движется через слой адсорбента в режиме идеального вытеснения, и распределение концентраций адсорбтива носит экспоненциальный характер. При этом выходная концентрация адсорбтива в газовой смеси близка к равновесной над адсорбентом. Если линейная скорость смеси в сечении пустого аппарата равна ш, то для слоя высотой Я справедливо следующее уравнение материального баланса (1 — Н = хю (с — Ср), откуда находим время защитного действия  [c.629]

    Заметим, что интенсивное перемешивание твердых частиц и равенство их концентраций в объеме псевдоожиженного слоя, как во всех процессах межфазного массообмена, обусловливают определенную потерю движущей силы в сравнении с противотоком взаимодействующих фаз (или при одной неподвижной фазе). По этой причине псевдоожижеиный слой уступает неподвижному слою адсорбента как по динамической адсорбционной способности, так и по времени защитного действия, особенно при низких концентрациях плохо адсорбирующихся веществ. Этот недостаток может быть, очевидно, устранен путем секционирования слоя. Напомним, что метод псевдоожижения предъявляет высокие требования к механической прочности адсорбентов, главным образом, к их сопротивляемости истиранию. [c.630]

    Процесс адсорбции основан на различной адсорбционной способности отдельных компонентов газа или жидкости. При прохождении адсорбатива через слой адсорбента на его поверхности и в порах поглощаются все компоненты, затем более активные молекулы определенных веществ будут вытеснять менее активные вещества. Так будет продолжаться до тех пор, пока наиболее активное вещество полностью не займет поверхность адсорбента. Адсорбент будет насыщен активным веществом и после этого начинается проскок компонента через адсорбент. Время до появления проскока называется временем защитного действия слоя адсорбента. Количество вещества, поглощаемое единицей массы адсорбента до проскока, определяет динамическую емкость адсорбента. Динамическая активность цеолитов составляет 60... 120 мг/см по парам воды при осушке до точки росы -70°С. [c.195]


Смотреть страницы где упоминается термин Адсорбенты вре.чя защитного действия: [c.12]    [c.540]    [c.166]    [c.147]    [c.138]    [c.138]    [c.138]    [c.202]    [c.152]    [c.627]    [c.180]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.540 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбенты действия

Защитное действие ВМС



© 2025 chem21.info Реклама на сайте