Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фронты стационарные

    Падение давления но фронту стационарного пламени обычно так мало, что в первом приближении можно рассматривать пламя как изобарное, [см. уравнение (XIV.10.3)]. Кроме того, кинетической энергией, связанной с падением давления, можно пренебречь по сравнению с энергией, сопровождающей тепловые изменения. Однако для достаточно богатых реагирующих смесей и очень экзотермических реакций скорость линейного расширения газов во фронте пламени может приближаться к скорости звука. [c.405]


Рис. 6.1. Схема, иллюстрирующая связь между скоростью потока исходной смеси и скоростью горения во фронте стационарного пламени горелки. Рис. 6.1. Схема, иллюстрирующая <a href="/info/1909090">связь между скоростью</a> потока <a href="/info/638912">исходной смеси</a> и <a href="/info/90679">скоростью горения</a> во <a href="/info/40668">фронте стационарного</a> пламени горелки.
    По нашему мнению, хотя приведенные результаты в достаточной мере доказывают справедливость теории стационарных фронтов, следует привести еще одно непосредственное доказательство. Для этого можно было бы изменять длину колонки (так же, как делал Викке [4]) и следить за тем, остается ли при этом форма фронта неизменной. Однако того же самого можно достичь, если в одну и ту же колонку вводить фронты различной формы, причем, фронты стационарной формы должны оставаться в первоначальном виде. [c.44]

    Для горючих с повышенной стойкостью к детонации (например, для метана) либо для смесей вблизи пределов детонации (например, в случае легко детонирующих углеводородов с высокой молекулярной массой) типичны нестационарные фронты. Экспериментальные трудности изучения нестационарных детонационных волн очевидны, поэтому большая часть имеющихся данных бьша получена в экспериментах с детонационными фронтами, стационарными в среднем по времени. Кроме того, многие работы проводились в трубах прямоугольного сечения, с тем чтобы подавить поперечные фронты в углах смыкающихся стенок трубы. Эффекты взаимодействия поперечных [c.310]

    Для оценки времени формирования стационарного фронта, или времени перехода от одной стадии к другой, необходимо иметь полное решение задачи динамики сорбции. Однако его нет. Поэтому в настоящее время можно поставить только приближенное физическое условие для оценки начала стадии стационарного фронта стационарная стадия практически наступает тогда, когда размытый фронт пройдет достаточно большое расстояние вдоль колонки гак, чтобы ширина фронта была значительно меньше ширины области насыщения сорбента (см. рис. 9). С теоретической же точки [c.62]

    Как видно из соотношений (II. 8) и (111-10), коэффициент диффузии определяется по размытию концентрационного,фронта. В стационарном режиме эта ширина Ха остается неизменной, [c.85]

    Наконец, коэффициенты дисперсии в стационарном и нестационарном режимах перемещивания могут существенно отличаться за счет наличия релаксационных процессов. В пространстве между зернами [7], особенно в вязкостном режиме течения, неизбежно возникают области замедленного движения жидкости — застойные зоны. При стационарном во времени поле концентраций эти зоны мало влияют на процесс переноса вещества вдоль и поперек потока. В нестационарном же режиме перемешивания, примесь, импульсно введенная в основной поток, сначала задерживается при проникновении ее в застойные зоны, затем же с соответствующей задержкой вымывается. Это обстоятельство также приводит к размытию фронта волны перемешивания. Если обозначить объемный коэффициент массообмена между проточными и застойными зонами через (с ), то по оценке размерностей релаксационная составляющая коэффициента дисперсии должна выражаться как [c.88]


    Если волну распространения пламени рассматривать как неограниченную плоскость, движущуюся через реакционную систему, тогда несгоревшие газы будут двигаться по направлению к этой плоскости со скоростью г , в то время как сгоревшие газы будут распространяться далеко позади ее со скоростью иь- Различие в скоростях обусловлено различием в плотностях сгоревшего и несгоревшего газов дь Закон сохранения масс требует, чтобы скорость потока массы через любую поверхность была постоянной, так что если V — линейная газовая скорость в любой точке по отношению к стационарному фронту пламени, то скорость массы т = ди постоянна для каж- [c.399]

    Сжатие и нагрев несгоревших газов ударной волной привадит к воспламенению. В этом случае во взрывной зоне в свою очередь выделяется большое количество тепла, которого почти достаточно для того, чтобы поддержать стационарную ударную волну. Если допустить, что между концом ударного фронта и началом взрывной волны имеется небольшая зона, где не идет никакой реакции, то газы в этой области будут более горячими, чем несжатые газы, и более плотными в результате большого давления. Следовательно, их локальная поверхностная скорость относительно ударного фронта меньше, чем скорость несжатых газов перед фронтом. Последующая химическая реакция, хотя и нагревает газы, по они сохраняют более высокую плотность, а следовательно, и более низкую скорость по сравнению с несгоревшими газами. Таким образом, относительно фронта детонации продукты горения удаляются с объемной скоростью, меньшей, чем скорость несгоревших газов. Это противоположно положению для обычной волны горения. Профиль одномерной детонационной волны схематично изображен на рис. XIV. . [c.405]

    Б стационарной детонационной волне ударный фронт сопровождается зоной химической реакции (см. рис. XIV.7). Волна горения характеризуется уменьшением давления и увеличением температуры вдоль фронта пламени. Поскольку в стационарном состоянии фронт пламени должен следовать за ударным фронтом на определенном расстоянии, модель движущейся поверхности не является вполне пригодной для описания стационарной детонации. [c.409]

    Если сделать приближения такого же типа, как и в случае стационарных пламен, то можно использовать уравнения (XIV. 10.22), чтобы получить скорость потока массы сгоревших газов относительно ударного фронта. Это уравнение вместе с законом идеального газа и законами сохранения (массы, момента и энергии) для двух зон полностью определяют плотность и давление в каждой из трех областей, разделенных зонами (т. е. несжатые газы, сжатые газы и сгоревшие газы). [c.409]

    Пламена могут быть светящиеся и прозрачные, стационарные (непрерывные) и периодические (дискретные), кинетические (пламена предварительно перемешанных горючего и окислителя) и диффузионные (горючее и окислитель поступают к фронту пламени раздельно и на процесс горения влияет взаимная диффузия реагирующих молекул). В зависимости от аэро- [c.113]

    Известно большое число методов определения и . Их можно подразделить на три группы. К первой относятся методы, основанные на регистрации скорости перемещения фронта пламени в трубе, открытой с одного конца (где проводят поджигание смеси) либо имеющей калиброванные отверстия с обоих концов. Вторую группу составляют методы, основанные на регистрации скорости распространения пламени в бомбах постоянного давления с эластичной оболочкой. К третьей группе относятся методы стационарного пламени (метод горелки). С помощью перечисленных методов были проведены широкие исследования с целью выяснения влияния различных факторов на значение Он. [c.117]

    Первоначально в теориях стационарного распространения пламени детонационная волна рассматривалась в виде плоской волны. Фотографические исследования показали, что зона горения в детонационной волне не является плоской. В силу различных возмущений она теряет устойчивость и изгибается, появляются изломы. Соответственно нарушается устойчивость фронта ударной волны. Взаимодействие возмущений, возникающих в детонационной волне, приводит к неравномерному распределению температуры, образованию очагов очень высокой температуры, появлению пульсаций (пульсирующая детонация). [c.142]

    Самоускоряющееся распространение фронта пламени будет сопровождаться формированием ударной волны перед фронтом пламени. Данный процесс будет продолжаться до тех пор, пока во фронте ударной волны не создадутся условия, приводящие к самовоспламенению смеси и скачкообразному возникновению детонационной волны, распространяющейся стационарно. [c.143]

    Гипотеза о квазистационарности топохимических реакций предполагает, что скорость установления стационарных концентраций реагентов во всех точках пространства, где происходят диффузия, реакция и т. п., во много раз превышает в 10 раз) скорость движения фронта реакции в этом пространстве. Для рассматриваемой реакции плотность жидкой среды, окружающей гранулы, соизмерима с плотностью набухающей гранулы. Молекулы серной кислоты, диффундирующие в гранулу, громоздки, [c.351]


    Марка мазута для стационарных котельных установок выбирается в зависимости от производительности форсунок, оснащенности сливного фронта п обеспеченности установок подогревательными устройствами. Высоковязкие топочные мазуты используются в стационарных котельных установках, имеющих мощный подогрев с форсунками высокой производительности. [c.214]

    Общепринятой моделью динамики адсорбции в неподвижном слое является модель фронтальной отработки слоя адсорбента [3]. После насыщения лобового слоя адсорбция вещества из потока в нем прекращается, и поток проходит этот участок без изменения концентрации. Время работы слоя до насыщения лобового участка принято называть периодом формирования фронта адсорбции. После этого начинается второй период, для которого характерна неизменная форма выходной кривой. Концентрационный фронт перемещается с постоянной скоростью вдоль слоя, что указывает на стационарный режим процесса. При этом существует область, называемая работающим слоем или зоной массопередачи, в которой концентрация падает от начальной практически до нулевой. Наличие такой зоны свидетельствует о существовании внутри- и внешнедиффузионного сопротивлений массопереносу. Инженерные методы расчета, допускающие существование стационарного фронта, широко применяются на практике. Для расчета адсорбционного аппарата в этом случае используют уравнение, описывающее время защитного действия слоя в зависимости от его длины, и общий закон массопередачи в слое. [c.69]

    Подставляя полученное значение го в (2.1.164), получим с учетом г = х — wt уравнение движения стационарного фронта  [c.73]

    Учитывая инвариантность решения относительно сдвига вдоль координаты г, можно считать 01г=о = 0. Смысл необходимого условия и сделанного предположения состоит в том, что формирование и распространение волны со стационарным профилем возможно лишь тогда, когда температура на входе в слой катализатора настолько мала, что скоростью химической реакции при этой температуре можно пренебречь но сравнению со значениями скорости реакции в области наиболее активного превращения вещества. Так же как и в теории горения [91, это означает, что стационарное распространение фронта реакции описывает процесс приближенно, асимптотически. [c.31]

    В стационарных пламенах, например пламени горелки Бунзена, существует определенная зона реакции окисления, или фронт пламени. Эта зона реакции имеет тенденцию к распространению в направлении реагирующей смеси, причем движение смеси к фронту пламени имеет противоположное направление. В таком пламени "скорость горения" определяется скоростью реакции во фронте пламени. Для стехиометрических смесей, например парафинов, максимальная "скорость горения" составляет от 0,52 (для гептана) до 0,45 (для метана) м/с. Более высокие скорости горения (в м/с) у этилена (0,83), ацетилена (1,58) и водорода (3,5). [c.278]

    Любое решение такого уравнения представляет собой бегущую с постоянной скоростью и = uскорость распространения фронта). Решение в виде, ,бегущей волны является промежуточной асимптотикой в том смысле, что ищется оно при t - < (так как это установившееся во времени решение), однако изменяется во времени (движется с постоянной скоростью), и поэтому достаточно далеко от стационарного состояния. Но каждое решение уравнения [c.82]

    Сравнение рис. 5-4. 5-8 и 5-9 показывает, что критический размер по порядку величины равен удвоенной ширине фронта стационарно распространяющегося пламеии ши-pHfia фронта пламени может быть определеиу, например, проекциями иа ось х точек пересечения линии максималь Hoi o градиента температуры с линиями максимальной и минимальной температуры (р ис. 5-7). Из уравнения теплового баланса атедует, что максимальный градиегп температуры, который, по-видимому, имеет место вблизи точки, соответствующей средней температуре, связан со скоростью распространения пламени соотношением [c.218]

    При выводе первого закона Фика предполагалось, что градиент концентрации не меняется е течением времени и не зависит от величины х. Первый закон Фика относится, таким образом, к процессу стационарной диффузии. Однако диффузия далеко не всегда протекает в условиях стационарности. Так, например, если в трубке, изображенной на рис. 6.1, слева на-.ходнтея твердое вещество, способное растворяться в жидкости, наполняюще трубку, то концентрация раствора будет изменяться и в пространстве и во времени. Прн этом концентрация, повыщаясь, достигает предельного значения, соответствующего растворимости вещества, а фронт насыщенного раствора передвигается слева направо. [c.146]

    Стабилизированная зона. Исследования [7, 33] показали, что при постоянной скорости вытеснения w = onst вблизи фронта вытеснения всем значениям насыщенности соответствует одна и та же скорость D распространения скачка насыщенности (стационарный скачок). 78 [c.278]

    Неизбежность отставания механического ударного фронта и химической реакционной зоны вытекает из кинетических положений. В стационарной ударной волне, движущейся через газ со сверхзвуковой скоростью (у 10 — 10 см сек), градиент плотности через ударный фронт ограничивается диффузией. Диффузионный поток вещества через ударный фронт толщиной бд равен Бд дх ОАд 8в, где О — средний коэффициент диффузии в ударном фронте, а Ар — изменение плотности. В стационарном состоянии он должен быть равен потоку массыр г и внутрь ударной волны. Таким образом, решая уравнение относительно б , получаем [c.405]

    При возбуждении ударной волны в химически реагирующем горючем газе под влиянием адиабатического сжатия смеси наряду с ударной волной возникает волна горения. Совокупность этих волн представляет собой детонационную волну. В детонационной волне потери на трение и теплоотдачу при ее движении по трубе компенсируются энергией, выделяющейся в волне горения. Благодаря этому при распространении по трубе детонационной волны становится возможным стационарный режим, когда скорость детонации (О) остается постоянной. Условие существования стационарного режима определяется правилом Чемпена — Жуге, согласно которому стабильность детонационной волны достигается, если скорость потока сжатого газа за фронтом детонационной волны равна или выше скорости звука в этом газе. Правило Чемпена — Жуге позволяет найти на адиабате Гюгоньо точку с такими значениями Рг и Уг, которые обеспечивают стабильность детонационной волны и позволяют вычислить скорость детонации В  [c.141]

    Такое поведение аппарата объясняется следующим образом. При увеличении расхода дисперсной фазы на входе в аппарат возникает слой частиц с более высоким значением концентрации дисперсной фазы, который по мере движения концентрированной волны начинает заполнять всю колонну. Поскольку по условию задачи уровень поверхности раздела фаз остается постоянным, т. е. общий объем смеси в рабочей зоне аппарата сохраняется, увеличение количества дисперсной фазы должно приводить к вытеснению избытка сплошной фазы. Этот избыток при принятой схеме регулирования отводится через клапан,установленный на стоке. Так как возникающий поток сплошной фазы направлен навстречу вспльгаающим частицам, значение концентрации дисперсной фазы, которое устанавливается за фронтом концентрационной волны, не соответствует новому стационарному значению, а несколько превышает его. Это превышение пропорционально значению объемной концентрации дисперсной фазы в апйарате до начала переходного процесса [c.130]

    После того как фронт концентрационной волны достигает уровня поверхности раздела фаз и колонна полностью заполняется дисперсной фазой с новым значением концентрации ( ° -I- Да (1), дополнительный нисходящий поток сплошной фазы прекращается. На входе дисперсной фазы возникает отрицательный скачок концентрации, который также начинает распространяться вверх по колонне. В данный период времени избыточное количество дисперсной фазы должно вьгеодиться из колонны (рис. 2.13, 62), а освободившаяся часть объема должна заполниться сплошной фазой. Это реализуется практически за счет снижения количества сплошной фазы, отводимой через сток, а формально проявляется в виде возникновения восходящего возмущенного течения сплошной фазы. В связи с этим значение концентрации дисперсной фазы, которое устанавливается за фронтом концентрационной волны во время второго цикла, несколько ниже нового стационарного значения (р°+Ла <> ° + + Да (рис. 2.13, а2). [c.130]

    Чрезвычайно показательно, что кинетическая модель реакции и описанное поведение системы в области атмосферных давлений и температур 1000 К в реальных условиях в значительной мере определяет гидродинамический механизм воспламенения и горения газа в детонационных волнах. Многочисленные экспериментальные наблюдения и теоретический анализ течения газа в зоне химической реакции, инициируемой нагревом газа за ударным фронтом плоской детонационной волны, показывают, что одномерная и стационарная схема течения в такой зоне неустойчива. На практике реализуется локально нестационарная и многофронтовая модель детонационного горения 1119, 1521, в которой термическое состояние ударно нагретого газа варьируется в достаточно широких пределах — от 900 до 3000 К вместо 1800 К, характерных для стационарной детонационной волны Чепмена — Жуге. Это изменение температуры обычно представляется в виде непрерывного распределения вдоль искривленного [c.305]

    Пространственно-временные диссипативные структуры типа бегущей волны возникают в связи с образованием предельного цикла, когда концентрации компонентов системы не только колеблются во времени, но и одновременно изменяют свои координаты в пространстве. Такая система допускает волнообразное движение, при котором локальные колебания не организуются для образования стоячей волны, а принимают участие в общем продвижении волновых фронтов. Диссипативная структура в этом случае реализуется по типу бегущей волны во времени и пространстве. Система может обладать несколькими стационарными состояниями, которые соответствуют одному и тому же значению параметра. Типичный пример такой ситуации показан на рис. 7.1, на котором кривая зависимости / (X, а) =0 стационарных значений концентраций X (а) от параметра а имеет три стационарных точки при одном фиксированном значении параметра ц. Если, например, а = о, то а, с — устойчивы, а Ь — неустойчивое состояние. Тогда части кривой АВ и ОС представляют собой ветви устойчивых, а ВС — ветвь неустойчивых стационарных состояний. При достижении бифуркационных значений параметра (а, а") происходят скачкообразнью переходы С А и ВО в экстремальных точках В 11 С кривой f (X, а) = О так что неустойчивые состояния на участке ВС практически никогда не реализуются в действительности. Таким образом, реализуется замкнутый гис-терезисный цикл АВОСА, в котором в результате изменения параметра система проходит ряд стационарных состояний, отличающихся друг от друга при одних и тех же значениях а в зависимости от направления движения. Системы, обладающие способностью функционировать в одном из двух устойчивых стационарных состояний, принято называть триггерными. Последние работают по принципу все или ничего , переключаясь из одного устойчивого режима в другой в результате изменения управляющего параметра а. [c.282]

    В этом случае переменные I — астрономическое время и х — длина слоя катализатора заменяют новыми переменными i и у = х — (где У) — скорость движения фронта выгорания). Такая замена эквивалентна переходу к новой системе координат, которая движется относительно слоя катализатора со скоростью ю в направлении движения потока. В этой системе возможно стационарное решение уравнений материального и теплового балансов, которое, опуская выводы, ямеет вид  [c.300]

    От диффузионного пламени отличается пламя, образующееся при горении заранее перемешанного горючего газа с воздухом (кинетическое горение). Это пламя при воспламенении какой-Jщбo части объема горючей смеси представляет собой светящуюся зону, в которой соприкасаются друг с другом свежая смесь и продукты горения зона горения всегда движется в сторону свежен горючей смеси, а фронт пламени имеет большей частью сферическую форму. При сгорании смесн горючих газов или паров с воздухом, подаваемых с определенной скоростью к юне горения, образуется стационарное пламя, имеющее форму хонуса. Во внутренней части конуса смесь подогревается до тем-лературы воспламенения. В остальной части конуса происходит орение, характер которого зависит от состава смеси. Если в смеси недостаточно кислорода, то во внешней части конуса про- [c.120]

    Таким образом, если влияние продольной теплопроводности по каркасу слоя катализатора незначительно, то тепловой фронт тем не менее может распространяться, но только в направлении фильтрации газа и если выполнено условие аи> Qwiu, 0). Следует отметить, что нарушение этого условия совпадает с условием множественности стационарных решений задачи (1) —(5) при л = Хр = Z)r = 0. [c.35]

    Выжиг кокса в слое катализатора сопровождается формированием и перемещением по длине слоя температурных и концентращюнных волн. В качестве примера на рис. 4.6 показан характер регенеращ1И закоксованного слоя катализатора для следующего набора определяющих параметров х = 1,2% (об.), = 5% (масс.), з = 3,4 мм, время контакта (отношение объема реактора к объемной скорости подачи газового потока) Хк = 14 с (взяты из работы [162]), Tq = 480 °С. Как видно, в процессе выжига происходит формирование в слое катализатора характерного температурного профиля, который в дальнейшем перемещается в направлении движения газового потока. Качественно аналогичный результат получен и авторами работы [162]. Однако для данных условий не было обнаружено существование стационарного (перемещающегося без изменения температурного градиента) фронта горения в течение длительного времени. Это связано с тем, что в расчетах учтена осевая теплопроводность по слою катализатора, способствующая разукрупнению крутых температурных градиентов. Одновременно с движением температурного фронта происходит характерное изменение распределения по длине слоя средней относительной закоксованности. При этом в лобовом участке слоя из-за сравнительно низких температур скорость удаления кокса меньше, чем на последующих участках. Интересен следующий результат чем больше объемная скорость подачи (меньше время контакта), тем относительно больше кокса остается невыгоревшим [c.86]

    Пусть в момент времени / = О входная температура скачкообразно уменьшилась до величины 6о = — 7,5 и далее при любом I оставалась неизменной. Предполагается, что величина скорости химического превращения при этой температуре пренебрежимо мала. На рисунке видно, что с течением времени максимальная температура реакционной смеси в слое не только не уменьшилась, но даже увеличилась, приблизившись к некоторому пределу бщ . Температурный градиент в формирующемся фронте выше стационарного, а при 4 4 он остается практически неизменным. Фронт сформировался. Теперь по слою катализатора с неизменной скоростью перемещается тепловая 0( , 1) и концентрационная 4) волны (фронты), которые в системе координат г = Г—ш1 остаются неизменными (здесь I — длина слоя катализатора, м — скорость движения фронта). Тепловой фронт гетерогенной химической экзотермической реакции, как показано ниже, обладает рядом чрезвычайно интересных свойств. Среди них, например, такое разность между максимальной температурой во фронте От и входной температурой реакционной смеси Во может быть во много раз больше величины ДЭадЛ р (бтах), где Хр (0тах) — равновесная степень превращения при максимальной температуре во фронте. [c.79]


Смотреть страницы где упоминается термин Фронты стационарные: [c.132]    [c.36]    [c.61]    [c.267]    [c.135]    [c.306]    [c.307]    [c.335]    [c.336]    [c.134]    [c.78]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фронт



© 2025 chem21.info Реклама на сайте