Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкозо фосфат превращение в гликоген

    Мышцы. Основные источники энергии в мышцах-глюкоза, жирные кислоты и кетоновые тела. Мышцы отличаются от мозга большим запасом гликогена (1200 ккал). Около трех четвертых всего гликогена организма находится в мышцах (табл. 23.1). Содержание гликогена в мышцах после еды может достигать 1%. Этот гликоген легко превращается в глюкозо-б-фосфат для последующего использования в мышечных клетках. В мышцах, как и в мозгу, глюкозо-б-фосфатазы нет, в связи с чем экспорта глюкозы из этих клеток не происходит. Вместо этого мышцы задерживают глюкозу, которую они предпочитают другим источникам энергии в периоды повышенной активности, В активно сокращающихся скелетных мышцах скорость гликолиза сильно превосходит скорость цикла трикарбоновых кислот. Пируват, образующийся в этих условиях, большей частью восстанавливается до лактата. Лактат переходит в печень, где он превращается в глюкозу. В результате этих превращений, называемых циклом Кори (разд, 15.21), часть метаболических отходов мышц перемещается в печень. Кроме того, в активно работающей мышце образуется большое количество аланина в результате трансаминирования пирувата. Подобно лактату, аланин может превращаться в печени в глюкозу. Совершенно иначе организован метаболизм покоящейся мышцы. В ней основным источником энергии служат жирные кислоты. Источником энергии для сердечной мышцы могут служить также кетоновые тела. Более того, сердечная мыш ца предпочитает ацетоацетат глюкозе. [c.289]


    Пробы 5 и 6 ставят для учета нарастания неорганического фосфата в процессе инкубации за счет возможного фосфатазного расщепления глюкозо-1-фосфата. Количество неорганического фосфата, определенное в этих пробах, вычитают из 1—4 проб. На основании полученных данных можно рассчитать процент превращения глюкозо-1-фосфата в гликоген под влиянием фосфорилазы а и фосфорилазы Ь в исследуемых мышцах, выражая прирост неорганического фосфата в микромолях в минуту на 1 г сырого веса ткани. [c.59]

    Во что обходится организму хранение глюкозы в форме гликогена Напишите ряд последовательных реакций и суммарную реакцию, которые позволят определить число молекул АТР, расходуемых на превращение цитоплазматического глюкозо-б-фосфата в гликоген и гликогена обратно в люкозо-6-фосфат. Какую часть это число составит от максимального числа молекул АТР, образующегося при полном расщеплении глюкозо-6-фосфата  [c.620]

    ПРЕВРАЩЕНИЕ ГЛЮКОЗО-1-ФОСФАТА В ГЛИКОГЕН [c.58]

    В работе предлагается определить содержание сахара в крови и процент превращения глюкозо-1-фосфата в гликоген в мышцах под влиянием фосфорилазы а я Ь после введения животному адреналина. [c.59]

    То количество глюкозо-6-фосфата, которое не было использовано для немедленного превращения в глюкозу крови, превращается в гликоген в результате последовательного действия фосфоглюкомутазы и гликоген-синтазы (разд. 20.13). [c.753]

    Центром, регулирующим распределение и превращение питательных веществ, служит печень. Глюкозо-6-фосфат-ключевой промежуточный продукт обмена углеводов-может превращаться в печени в гликоген, в глюкозу крови или через ацетил-СоА в жирные кислоты. Он может также подвергаться распаду либо в ходе гликолиза и цикла лимонной кис- [c.775]

    Еще один процесс, который имеет отношение к превращению энергии, — это фосфоролиз, названный так по аналогии с гидролизом. В этом процессе расщепление связей в субстрате происходит под действием фосфата, а не воды. Так, например, гликоген, запасной полимер глюкозы, распадается не путем гидролиза до глюкозы, а в результате фосфоролиза до глюкозо-1-фосфата  [c.628]

    В мышечном экстракте, полученном, как описано ранее (с. 50), 1сследуют процент превращения глюкозо-1-фосфата в гликоген под влиянием фосфорилазы а и Ь (с. 58). В крови определяют содержа- [c.59]

    Превращение глюкозо-1-фосфата в гликоген и обратное превращение возможны благодаря тому, что оба эти соединения богаты свободной энергией . Однако глюкозо-1-фосфат образуется из глюкозы только под действием гексокиназы и АТФ, причем источником энергии, необходимой этой реакции, служит в конечном счете высокоэргическая связь АТФ. [c.321]


    В задаче предлагается проследить за превращением глюкозо-1-фосфата из скелетных и сердечной мышц крысы (кролика) в гликоген, измеряя количество неорганического фосфата, образующегося в процессе инкубации при участии фоофорилазы (обратная реакция). Добавление в реакционную смесь АМФ позволяет определить убыль тлю-козо-1-фосфата под влиянием обеих форм фосфорилазы. В пробах без АМФ ферментативное превращение глюкозо-1-фосфата будет осуществляться только фоофорилазой а. По разности между приростом неорганического фосфата, освобождающегося в ходе реакции в присутствии и отсутствие АМФ, рассчитывают убыль глюкозо-1-фосфата в результате действия фосфорилазы Ь. Следует учесть, что фосфорилаза а в реакционной среде без АМФ проявляет только 70% активности, определяемой в его присутствии. В связи с этим при расчете убыли глюко-зо-1-фоофата в пробе с АМФ под влиянием фосфорилазы Ь необходимо величину, полученную для фосфорилазы а в пробе без АМФ, пересчитать на 100%. [c.58]

    Путь синтеза гликогена также отличается от пути, по которому идет его расщепление. Он включает превращение глюкозо-1 фосфата в уридиндифосфат-глюкозу, которая затем-при участии гликоген-синтазы - передает глюкозиль-ные группы на нередуцирующий конец боковых цепей гликогена. Новые боковые цепи возникают в молекулах гликогена в результате действия гли-козил-(4 - 6)-трансферазы [а(1,4 - 1,6)-трансгликозилазы]. Процессы синтеза и расщепления гликогена регулируются независимо и реципрокно. Соотношение скоростей этих двух процессов контролируется гормонами адреналином и глюкагоном. Известен ряд генетических дефектов, при которых синтез или расщепление гликогена нарушены. [c.618]

    В животных клетках энергия запасается в форме гликогена, который образуется из глюкозо-6-фосфата в результате трех последовательных ферментных реакций 1) превращения глюко-зо-6-фосфата в глюкозо-1-фосфат 2) образования уридиндифос-фат-Е)-глюкозы 3) образования из нее гликогена. Когда клетка получает достаточно энергии, в ней образуется много глюкозо-6-фосфата и это служит сигналом для синтеза гликогена сигнал срабатывает на уровне третьей реакции таким образом, что он активирует фермент, превращающий уридиндифосфат-О-глюкозу в гликоген. При недостатке энергии возникает необходимость в реализации ее запасов, хранимых клеткой в виде гликогена. Осуществляется это также путем активации фермента, но теперь уже гликоген-фосфорилазы, расщепляющей гликоген. Природа этой реакции расшифрована и установлено, что веществом, сигнализирующим о включении положительной обратной связи, является аденозинмонофосфат. [c.90]

    Важным энергетическим резервом организма является запас гликогена в печени. Гликоген получается из глюкозы, содержащейся в крови. Превращение глюкозы в гликоген является синтетическим процессом, так как гликоген представляет собой высокомолекулярное вещество. Цепь превращений начинается с воздействия глюкозо-киназы, которая переносит фосфатный остаток с АТФ на глюкозу, в результате чего образуется глюкоза-6-фосфорная кислота. На это вещество действует ури-динтрифосфорная кислота (УТФ), УТФ отличается от АТФ тем, чтэ вместо аденозина в нем содержится уридин. В результате действия УТФ получается пирофосфорная кислота и уридинофосфоглюкоза. Эта последняя и служит материалом, из которого образуется гликоген. Образовавшаяся при этом уридиндифосфорная кислота (УДФ) для повторения цикла должна превратиться опять в УТФ, т. е. должна приобрести макроэргическую связь. Эта связь доставляется ей АТФ, которая, конечно, превращается при этом в ДДФ. АДФ может перейти снова в АТФ, присоединив неорганический фосфат и получив соответствующую порцию энергии. Энергия получается за счет процессов окисления, сопряженных с образованием АТФ, т. е. за счет окислительного фосфорилирования. Следовательно, для превращения энергии окисления в энергию химической связи гликогена необходимо осуществить два сложных цикла. [c.112]

    Инсулин. Большую роль в углеводном обмене и в регуляции содержания сахара в крови играет гормон инсулин. В противоположность действию других гормонов он понижает концентрацию сахара в крови, усиливая превращение глюкозы в гликоген как в печени, так и в мышцах, способствуя надлежащему окислению глюкозы в тканях, а также недо-пуская расщепления гликогена печени с образованием глюкозы. Инсулин действует на процесс фосфорили-рования глюкозы с образованием глюкозо-6-фосфата, являющегося первой ступенью глюкогенезиса, или образования гликогена. В отсутствие достаточного поступления инсулина превращение внеклеточной глюкозы во внутриклеточный глюкозо-6-фос-фат задерживается. [c.364]

    Конечными продуктами окисления глюкозы в организме являются углекислота и вода окисление сопровождается выделением энергии. Главное соединение, участвующее в обмене глюкозы,— это глюкозо-6-фосфат. Как было показано выше, глюкозоб-фосфат может образовываться путем фосфорилирования глюкозы, контролируемого инсулином. Образовавшись, он может превратиться в гликоген или в свободную глюкозу или же подвергнуться превращениям, происходящим различными путями и по различным механизмам. Два главнейших пути превращений глю-козо-6-фосфата — это анаэробный путь, или схема Эмбдена — Мейергофа, за которым следует аэробный цикл, или цикл Кребса. Основная часть энергии, выделяющейся при окислении молекулы глюкозы, освобождается в цикле Кребса, однако весьма важно, что пировиноградная кислота, используемая в цикле Кребса, образуется в цепи реакций схемы Эмбдена — Мейергофа. [c.367]


    Механизм влияния инсулина на утилизацию глюкозы включает в себя и другой анаболический процесс. В печени и в мышцах инсулин стимулирует превращение глюкозы в глюкозо-6-фосфат, который затем подвергается изомеризации в глюкозо-1-фосфат и в таком виде включается в гликоген под действием фермента гликогенсинтазы (ее активность также стимулируется инсулином). Это действие имеет двойственный и непрямой характер. Инсулин снижает внутриклеточный уровень сАМР, активируя фосфодиэстеразу. Поскольку сАМР-зависимое фосфорилирование инактивирует гликогенсинтазу, при низком уровне этого нуклеотида фермент находится в активной форме. Инсулин активирует и фосфатазу, катализирующую дефосфорилирование гликогенсинтазы, тем самым активируя этот фермент. И наконец, инсулин ингибирует фосфорилазу с помощью механизма, работающего с участием с АМР и фосфатазы, как описано выше. В результате высвобождение глюкозы из гликогена снижается. Таким образом, влияние инсулина на метаболизм гликогена также является анаболическим. [c.256]

    Гибсон, 1948 [1099]) (25080). В этом случае поврежденным ферментом является МАВН - зависимая метгемоглобин-редуктаза. Первая попытка систематического изучения группы заболеваний человека, связанных с дефектами метаболизма, бьша предпринята в 1951 году. При исследовании болезни накопления гликогена [1044] супруги Кори показали, что в восьми из десяти случаев патологического состояния, которое диагностировалось как болезнь Гирке (23220), структура гликогена печени представляла собой нормальный вариант, а в двух случаях была явно нарушена. Было также очевидно, что гликоген печени, накапливаясь в избытке, не может быть непосредственно превращен в сахар, поскольку у больных проявляется тенденция к гипогликемии. Для расщепления гликогена с образованием глюкозы в печени необходимы многие ферменты. Два из них-амило-1,6-глюкозидаза и глюкозо-6-фосфатаза-были выбраны для изучения как возможные дефектные элементы ферментной системы. В гомогенатах печени при различных значениях pH было измерено освобождение фосфата из глюкозо-6-фосфата. Результаты представлены на рис. [c.10]

    Какова цена превращения глюкозо-б-фос-фата в гликоген и обратного превращения гликогена в глюкозо-6-фосфат Соответствующие реакции уже были описаны, за исключением приведенной ниже реакции 5, представляющей собою регенерацию UTP. UDP фосфорилируется за счет АТР в реакции, катализируемой нуклеозид-дифосфоки-назой. [c.122]

    Глюкозо-б-фосфат. Глюкоза, поступающая в клетку, быстро фосфорилируется до глюкозо-6-фосфата, который может затем запасаться в виде гликогена, расщепляться до пирувата или превращаться в ри-бозо-5-фосфат (рис. 23.10). Гликоген образуется в условиях избытка глюкозо-б-фосфата и АТР. Если же АТР и углеродные скелеты молекул расходуются на биосинтетические реакции, глюкозо-6-фосфат вступает в реакции гликолитического пути. Таким образом, превращение глюкозо- [c.286]


Смотреть страницы где упоминается термин Глюкозо фосфат превращение в гликоген: [c.158]    [c.612]    [c.718]    [c.624]    [c.209]   
Биохимия Том 3 (1980) -- [ c.483 ]




ПОИСК





Смотрите так же термины и статьи:

Гликоген

Глюкоза фосфат

Глюкозо фосфат



© 2024 chem21.info Реклама на сайте