Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфорилаза формы

Рис. 9 22. Регуляция активности гликогенфосфорилазы путем ее ковалентной модификации. В активной форме фермента (фосфорилаза а) специфические остатки серина (по одному в каждой субъединице) фосфорилированы. В результате ферментативного отщепления фосфатных групп, катализируемого фосфатазой фосфорилазы, фосфорилаза а переходит в относительно неактивную фосфорилазу Ь. Фосфорилаза Ь может реактивироваться и превратиться в фосфорилазу а под действием киназы фосфорилазы, катализирующей фосфорилирование гидроксильных групп серина за счет АТР. Рис. 9 22. <a href="/info/611529">Регуляция активности гликогенфосфорилазы</a> путем ее <a href="/info/100411">ковалентной модификации</a>. В <a href="/info/1302348">активной форме</a> фермента (фосфорилаза а) специфические остатки серина (по одному в каждой субъединице) фосфорилированы. В результате ферментативного отщепления <a href="/info/105049">фосфатных групп</a>, катализируемого <a href="/info/283551">фосфатазой фосфорилазы</a>, фосфорилаза а переходит в относительно неактивную фосфорилазу Ь. Фосфорилаза Ь может реактивироваться и превратиться в фосфорилазу а под действием <a href="/info/100268">киназы фосфорилазы</a>, катализирующей фосфорилирование <a href="/info/1302079">гидроксильных групп серина</a> за счет АТР.

    Как отмечалось, эффект катехоламинов в значительной мере опосредован действием цАМФ, который активирует протеинкиназы тканей. При участии последних происходит фосфорилирование ряда белков, в том числе гликогенсинтазы и фосфорилазы Ь — ферментов, участвующих в обмене углеводов. Фосфорилированный фермент гликогенсинтаза сам по себе малоактивен или полностью неактивен, но в значительной мере активируется положительным модулятором глюкозо-6-фосфатом, который увеличивает фермента. Эта форма гликогенсинтазы называется [c.324]

    Более важную роль в регуляции играют, однако, факторы, определяемые стимулирующим действием гормонов и нервной системы. Если концентрация адреналина в крови повышается, то этот гормон начинает связываться с рецепторами на поверхности клеточных мембран, активируя образование циклического АМР (гл. 7, разд. Д, 8). Аналогично в печени рецепторы глюкагона связывают этот гормон и стимулируют образование циклического АМР. Циклический АМР в свою очередь активирует протеинкиназы, которые модифицируют различные белки, в том числе киназу фосфорилазы (Ei на рис. 11-10), а также гликоген-синтетазу. В покоящейся мышце киназа фосфорилазы находится в неактивной форме, и фосфорилирование протеинкиназой переводит ее в [c.507]

    Под действием киназы фосфорилазы Ь, активность которой регулируется цАМФ-зависимой протеинкиназой, обе субъединицы молекулы неактивной формы фосфорилазы Ь подвергаются ковалентному фосфорилированию и превращаются в активную фосфорилазу а. Дефосфорилирование последней под действием специфической фосфатазы фосфорилазы а приводит к инактивации фермента и возврату в исходное состояние. [c.292]

    Таким образом, адреналин оказывает двойное действие на обмен углеводов ингибирует синтез гликогена из УДФ-глюкозы, поскольку для проявления максимальной активности D-формы гликогенсинтазы нужны очень высокие концентрации глюкозо-6-фосфата, и ускоряет распад гликогена, так как способствует образованию активной фосфорилазы а. В целом суммарный результат действия адреналина состоит в ускорении превращения гликогена в глюкозу. [c.324]

    Фосфорилазы переводят полисахариды (в частности, гликоген) из запасной формы в метаболически активную форму в присутствии фосфорилазы гликоген распадается с образованием фосфорного эфира глюкозы (глюкозо-1-фосфата) без предварительного расщепления на более крупные обломки молекулы полисахарида. В общей форме эту реакцию можно представить в следующем виде  [c.325]


    Более подробно изучен механизм активирования и регуляции мышечной гликогенфосфорилазы, активирующей распад гликогена. Выделяют 2 формы каталитически активную —фосфорилаза а и неактивную —фосфорилаза Ь. Обе фосфорилазы построены из двух идентичных субъединиц (мол. массой 94500), в каждой остаток серина в положении 14 подвергается процессу фосфорилирования—дефосфорилирования, соответственно активированию и инактивированию (рис. 8.6). [c.292]

    Более гибким механизмом является обратимое взаимопревращение активных и неактивных форм ферментов. Яркий пример такого механизма представляет собой реакция фосфорилазы. Фермент катализирует обратимое присоединение глюкозы (в виде глюкозо-1-фосфата) к полисахариду гликогену, представляющему собой ту молекулярную форму, в которой животные запасают углеводы и тем самым легко доступные источники энергии. Фосфорилаза, таким образом, держит ключи от этого склада энер- [c.536]

    Регуляторным ферментом гликогенолиза является гликогенфосфорилаза — первый фермент в катаболической цепи мобилизации гликогена. Этот фермент переводит углеводы из запасной формы в форму метаболически активную (фосфорилированную). Фермент фосфорилаза существует в двух формах, одна из которых (фосфорилаза а) активна, в то время как другая (фосфорилаза Ь) неактивна. Обе формы могут диссоциировать на одинаковые субъединицы. Фосфорилаза Ь состоит из двух субъединиц, а фосфорилаза а — из четырех. Превращение фосфорилазы Ь в фосфорилазу а осуществляется фосфорилированием белка по уравнению [c.251]

    Адреналин — гормон мозгового слоя надпочечника. После введения адреналина содержание глюкозы резко возрастает благодаря усиленному распаду гликогена в печени и поступлению глюкозы из печени в кровь. Механизм действия адреналина в конечном итоге сводится к превращению в печени мало активной фосфорилазы б в активную форму — фосфор ил азу а. Фосфор и л аз а а осуществляет быстрый распад гликогена печени. Одновременно процесс синтеза гликогена тормозится. [c.138]

    В самой общей форме характер действия металлических ионов на ферментные системы можно разделить на следующие виды 1) образование специфической структуры активного центра 2) образование структуры в системе активный центр-субстрат 3) поляризация групп активного центра и субстрата. Благодаря этому могут осуществляться процессы 1) воздействия на определенные группы субстрата — атаки молекул воды и других у ферментов типа гидролаз и фосфорилаз 2) процессы переноса (электронов и групп атомов) 3) процессы фиксации и переноса без глубоких изменений в переносимой молекуле (перенос кислорода гемоглобином).  [c.363]

    Киназа фосфорилазы катализирует фосфорилирование фосфорилазы Ь, превращая ее в более активную форму — фосфорилазу а фосфорилаза b+Mg—АТФ г фосфорилаза a + Mg—АДФ. [c.222]

    Существуют относительно быстрые регуляторные механизмы, которые направлены непосредственно на ферменты. Так, практически неактивный фермент может превращаться в активную форму путем ковалентной модификации [72] >. Иногда ковалентная модификация, напротив, приводит к инактивации фермента. Так, активности двух ферментов, участвующих в метаболизме гликогена — гликогенфосфорилазы и гликогенсинтетазы, — регулируются с помощью фосфорилирования (переноса концевой фосфатной группы от АТР на определенный остаток серина см. гл. 11, разд. Е, 3)- >. Прн этом фермент, катализирующий распад гликогена (фосфорилаэа Ь), превращается в более активную форму (фосфорилазу а), а фермент, катализирующий синтез гликогена, — в неактивную форму. В результате направление клеточного метаболизма изменяется от запасания полисахарида (гликогена) к его деградации, что обеспечивает клетку энергией. Дефосфорилирование обоих ферментов катализируется фосфатазой, переводящей ферменты в исходное состояние (рис. 6-15). Как фермент, катализирующий модификацию (киназа гл. 7, разд. Д, 6), так и фосфатаза регулируются по аллостерическому механизму. Эти довольно сложные механизмы способны за очень короткий промежуток времени обеспечить клетку модифицированным ферментом. [c.69]

    ГИИ и действует согласно весьма сложному механизму контроля. Фермент существует в виде двух различных форм, фосфорилаз (а) и (Ь). Фосфорилаза (Ь) неактивна (по крайней мере в отсутствие АМР — см. ниже) и существует в виде димера. Посредством фосфорилирования определенного остатка серина в каждой из субъединиц белка, катализируемого ферментом киназой фосфорилазы, фосфорилаза превращается в (а)-форму. Обратная реакция катализируется отдельным ферментом — фосфатазой фосфорилазы. [c.537]

    Опуская дальнейщие детали этого очень сложного процесса [148], можно видеть, как система такого рода может обеспечить весьма чувствительный механизм контроля процесса потребления глюкозы из ее хранилища — гликогена. Одна молекула фосфорилазы (а) катализирует высвобождение тысяч молекул глюкозы, а одна молекула киназы фосфорилазы может активировать тысячи молекул фосфорилазы . Если добавить к этому, что киназа фосфорилазы также существует в активной и неактивной формах и активируется посредством фосфорилирования еще одним ферментом, киназой киназы фосфорилазы, который к тому же регулируется по соверщенно другому механизму, то только тогда становится ясным, какими сложными и чувствительными могут быть механизмы контроля этого типа. [c.537]


    Реакцию фосфорилирования катализирует фермент киназа фосфорилазы. Сама киназа фосфорилазы превращается из менее. активной в более активную форму посредством фосфорилирования в результате реакции, требующей АТР, цикло-АМР и ионы -Mg2+, так же как и фермента киназы киназы фосфорилазы. [c.551]

    В этой реакции фосфорилаза а превращается в фосфорилазу Ь, гораздо менее активно катализирующую распад гликогена. Таким образом, активная форма гликогенфосфорилазы превращается в относительно неактивную форму в результате расщепления двух ковалентных связей между остатками фосфорной кислоты и двумя специфическими остатками серина в молекуле фермента. [c.263]

    Катализируется эта реакция ферментом, который называется киназой фосфорилазы Ь. Установлено, что эта киназа может существовать как в активной, так и в неактивной форме. Неактивная киназа фосфорилазы превращается в активную иод влиянием фермента протеинкиназы (киназа киназы фосфорилазы), и не просто протеинкиназы, а цАМФ-зависимой протеинкиназы. [c.326]

    Стимулируя действие фосфорилазы при помощи серии описанных выше механизмов, циклический АМФ активирует также протеинкиназу, после чего она начинает фосфорилировать активную форму (1-форму, или независимую форму) гликогенсинтетазы. При этом фосфорилиро-ванная форма гликогенсинтетазы (D-форма, или зависимая форма) неактивна в отсутствие специфического активатора. Таким образом, инициирование фосфоролиза гликогена сопровождается ингибированием дальнейшего синтеза гликогена. Фосфорилированная форма гликогенсинтетазы (D-форма) аллостерически активируется глюкозо-6-фосфа-том. Следовательно, если имеет место быстрое повышение содержания метаболита, то это не только ингибирует фосфорилазную реакцию, но также стимулирует синтез гликогена, даже если вся гликогенсинтетаза превращена в неактивную форму (D-форму). [c.509]

    Формы (а и Ь) фосфорилазы гликогена [c.333]

    В скелетной мускулатуре фосфорилаза находится в двух формах Ь и а. Активность фосфорилазы Ь можно определить только в присутствии АМФ фосфорилаза а активна в отсутствие АМФ. Для обеих форм фермента АМФ является положительным аллостерическим эффектором. Молекула фосфорилазы Ь представляет собой димер, фосфорилазы а — тетрамер. Молекулярная масса субъединицы фермента равна 97 400 Да. Обе формы фермента могут находиться в состоянии равновесия между димерными и тетрамерпыми молекулами. На переход димеров в тетрамеры и обратно оказывают влияние компоненты ферментативной реакции, активаторы, ингибиторы, а также pH, ионная сила раствора, температура и др. Наиболее активными являются димеры обеих форм. Взаимопревращение фосфорилазы Ь и фосфорилазы а осуществляется ферментативно с помощью киназы фосфорила- [c.219]

    Ряд других, довольно редко встречающихся наследственных заболеваний также вызван накоплением гликогена, которое обусловлено по существу той же причиной, а именно сильным ингибированием процесса расщепления гликогена в гликолитическом метаболизме, что в свою очередь связано с недостаточной активностью какого-нибудь из ферментов фос-фофруктокиназы, киназы фосфорилазы печени, фосфорилазы печени или глюкозо-6-фосфатазы печени. В последнем случае накопление гликогена объясняется тем, что его запасы не поступают из печени в кровь в виде свободной глюкозы. При одном из таких заболеваний имеет место нехватка ветвящего фермента, участвующего в синтезе гликогена, в результате чего образующийся гликоген содержит необычно длинные неразветвленные ветви. Другая же форма заболевания связана с недостатком фермента, ответственного за расщепление гликогена в точках ветвления, в результате чего легко из печени может удаляться лишь ограниченное количество глюкозы, образующейся в результате расщепления только наружных неразветвленных ветвей гликогена. [c.510]

    Химическая модификация фермента. Некоторые белки при формировании третичной структуры подвергаются постсинтетической химической модификации (см. главу 1). Оказалось, что активность ряда ключевых ферментов обмена углеводов, в частности фосфорилазы, гликогенсинтазы и др., также контролируется путем фосфорилирования и дефосфорили-рования, осуществляемого специфическими ферментами—протеинкиназой и протеинфосфатазой, активность которых в свою очередь регулируется гормонами (см. главу 10). Уровень активности ключевых ферментов обмена углеводов и соответственно интенсивность и направленность самих процессов обмена определяются соотнощением фосфорилированньгх и де-фосфорилированных форм этих ферментов. [c.154]

    ВО внутренние отделы клетки и вызывает здесь ковалентную модификацию, под влиянием которой гликоген-фосфорилаза (первый фермент в системе, катализирующей превращение гликогена в глюкозу и другие продукты разд. 9.22) переходит из менее активной формы в более активную (рис. 13-16). [c.390]

    Фосфорилаза мышечной ткани существует в двух взаимопревра-щающихся формах активной — фосфорилаза а и неактивной — фосфорилаза Ь (с. 219). [c.58]

    В задаче предлагается проследить за превращением глюкозо-1-фосфата из скелетных и сердечной мышц крысы (кролика) в гликоген, измеряя количество неорганического фосфата, образующегося в процессе инкубации при участии фоофорилазы (обратная реакция). Добавление в реакционную смесь АМФ позволяет определить убыль тлю-козо-1-фосфата под влиянием обеих форм фосфорилазы. В пробах без АМФ ферментативное превращение глюкозо-1-фосфата будет осуществляться только фоофорилазой а. По разности между приростом неорганического фосфата, освобождающегося в ходе реакции в присутствии и отсутствие АМФ, рассчитывают убыль глюкозо-1-фосфата в результате действия фосфорилазы Ь. Следует учесть, что фосфорилаза а в реакционной среде без АМФ проявляет только 70% активности, определяемой в его присутствии. В связи с этим при расчете убыли глюко-зо-1-фоофата в пробе с АМФ под влиянием фосфорилазы Ь необходимо величину, полученную для фосфорилазы а в пробе без АМФ, пересчитать на 100%. [c.58]

    Молекула киназы фосфорилазы состоит из субъединиц четырех типов ар б. Молекулярная масса фермента — 1,3-10 Да — отвечает формуле (аРуб)4- Киназа фосфорилазы играет, как показано, ключевую роль в регуляции обмена гликогена и в сопряжении гликогенолиза и мышечного сокращения. В скелетной мускулатуре она существует в двух молекулярных формах нефосфорилированной ( неактивированная ) и фосфорилированной ( активированная ). Первая активна лищь при pH 8,2, вторая — при pH 6,8 и 8,2. При активации фермента отнощение активностей, измеренных при pH 6,8/8,2, возрастает от 0,05 до 0,9—1,0. Активация киназы достигается фосфорилированием а- и р-субъединиц, которое катализирует цАМФ-зависимая протеинкиназа. Каталитическую роль выполняет -субъединица б-субъединица идентична a +- вязывaющeмy белку — кальмодулину. Ферментативная активность киназы фосфорилазы полностью зависит от ионов На р-субъединице фермента имеется регуляторный центр, обладающий высоким сродством к АДФ. Константа Михаэлиса для АТФ равна [c.223]

    Так же как и другие киназы, протеинкиназа и киназа фосфорилазы требуют для своей активности ионы магния. Кроме того, киназа фосфорилазы в своей неактивной форме аллостерически активируется ионами кальция. Напомним, что инициирование процесса мышечного сокращения вызывается нервными импульсами, которые стимулируют освобождение ионов кальция из пузырьков эндоплазматического ретикулума. Таким образом, ионы кальция не только включают процесс мышечного сокращения, но и ускоряют процесс фосфорилирования фосфорилазы Ь в фосфорилазу а. Теперь некоторые этапы каскадного механизма становятся яснее. Оказывается, что наиболее важная стадия, катализируемая киназой фосфорилазы, нужна для того, чтобы дать возможность реализоваться следующей стадии, на которую оказывают специфическое влияние ионы кальция, освобождающиеся при нервном возбуждении. С другой стороны, возможность активации киназы фосфорилазы в результате фосфорилирования протеинкиназой делает процесс чувствительным к гормональной стимуляции. [c.509]

    Ионам Са принадлежит центральная роль в регуляции многих клеточных функций. Изменение концентрации внутриклеточного свободного Са является сигналом для активации или ингибирования ферментов, которые в свою очередь регулируют метаболизм, сократительную и секреторную активность, адгезию и клеточный рост. Источники Са могут быть внутри- и внеклеточными. В норме концентрация Са в цитозоле не превышает 10 М, и основными источниками его являются эндоплазмати-ческий ретикулум и митохондрии. Нейрогормональные сигналы приводят к резкому повышению концентрации Са (до 10 М), поступающего как извне через плазматическую мембрану (точнее, через потенциалзависимые и рецепторзависимые кальциевые каналы), так и из внутриклеточных источников. Одним из важнейших механизмов проведения гормонального сигнала в кальций—мессенджерной системе является запуск клеточных реакций (ответов) путем активирования специфической Са -кальмодулин-зависимой протеинкиназы. Регуляторной субъединицей этого фермента оказался Са -связывающий белок кальмодулин (мол. масса 17000). При повышении концентрации Са в клетке в ответ на поступающие сигналы специфическая протеинкиназа катализирует фосфорилирование множества внутриклеточных ферментов —мишеней, регулируя тем самым их активность. Показано, что в состав киназы фосфорилазы Ь, активируемой ионами Са , как и КО-синтазы, входит кальмодулин в качестве субъединицы. Кальмодулин является частью множества других Са -свя-зывающих белков. При повышении концентрации кальция связывание Са с кальмодулином сопровождается конформационными его изменениями, и в этой Са -связанной форме кальмодулин модулирует активность множества внутриклеточных белков (отсюда его название). [c.296]

    Обычно различают обратимую ковалентную и нековалентную химические модификации ферментов, осуществляемые через ОН-группы серина, реже—тирозина или за счет нековалентных взаимодействий с молекулой фермента. В первом случае активным ферментом оказывается или фосфо-рилированная, или дефосфорилированная форма, как в случае с молекулами мыщечной фосфорилазы и гликогенсинтазы соответственно (см. главу 10). В качестве примеров можно в виде схемы представить оба типа модификации, в которой символом Р обозначается остаток фосфата, Р — неорганический фосфат (Н3РО,), РР — неорганический пирофосфат (Н,Р,0,), АМФ —остаток адениловой кислоты (рис. 4.23 4.24). [c.154]

    В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток , образовавшийся глю-кагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу. Фосфорилирование первого фермента способствует формированию активной гликоген-фосфорилазы и соответственно распаду гликогена с образованием глюкозо-- 1-фосфата (см. главу 10), в то время как фосфорилирование гликогенсинтазы сопровождается переходом ее в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови. [c.272]

    Образовавшийся в этой реакции глюкозо-1-фосфат может затем расщепиться и превратиться либо в молочную кислоту (в мьшще), либо в свободную глюкозу (в печени). Гликогенфосфорилаза существует в двух формах в виде фосфори-лазы а (активная форма) и фосфорилазы Ь (относительно неактивная форма рис. 9-22). Фосфорилаза а представляет собой димер, состоящий из двух идентичных субъединиц, в каждой из которых имеется один специфический остаток серина, фосфорилированный по гидроксильной группе. Эти остатки фосфосери-на необходимы для максимальной активности фермента. Фосфатные группы, соединенные с остатками серина, можно удалить из фосфорилазы а с помощью фермента, называемого фосфа-тазой фосфорилазы, который катапизи-рует гидролитический разрьш связи между фосфатом и остатком серина. [c.263]

    На рис. 10.1 изображены процесс распада гликогена до глюкозо-1-фосфата и y гa тиe в этом процессе ггАМФ. Фермент фосфорилаза существует в двух формах, одна из которых (фосфорилаза а) активна, в то время как другая (фосфорилаза Ь) обычно неактивна. Обе формы могут диссоциировать на субъединицы. Фосфорилаза Ь состоит из двух субъединиц, а фосфорилаза а-из четырех. Превращение фосфорилазы Ь в фосфорилазу а осуществляется фосфорилированием белка  [c.325]

    Активная форма последней образуется при участии цАМФ, которая в свою очередь образуется из АТФ под действием фермента аденилатциклазы, стимулируемой, в частности, адреналином и глюкагоном. Увеличение содержания адреналина в крови приводит в этой сложной цепи реакций к превращению фосфорилазы Ь в фосфорилазу а и, следовательно, к освобождению глюкозы в виде глюкозо-1-фосфата из запасного полисахарида гликогена. Обратное превращение фосфорилазы а в фосфорилазу Ь катализируется ферментом фосфатазой (эта реакция практически необратима). [c.326]

    Нарушение метаболизма сердечной мышцы при ишемической болезни сердца. Для ишемизированного миокарда характерны сниженное окислительное фосфорилирование и повышенный анаэробный обмен. Раннее увеличение гликогенолиза и гликолиза за счет имеющегося в сердечной мышце гликогена и глюкозы, усиленно поглощаемой миокардом в начальной стадии ишемии, происходит в результате повышения внутриклеточной концентрации катехоламинов и цАМФ, что в свою очередь стимулирует образование активной формы фосфорилазы —фосфорилазы а и активацию фосфофруктокиназы—ключевого фермента гликолиза. Однако даже максимально усиленный анаэробный метаболизм не способен длительно защищать уже поврежденный гипоксический миокард. Очень скоро запасы гликогена истощаются, гликолиз замедляется вследствие внутриклеточного ацидоза, который ингибирует фосфофруктокиназу. [c.660]

    В активной форме, катализирующей реакцию образования глюкозо-1-фосфата (эту форму часто называют фосфорилазой а), фермент представляет собой тетрамер, состоящий из четырех идентичных субъединиц. У всех субъединиц фосфо-рилирован остаток серина 8ег-14. Однако эта форма является неустойчивой, поскольку вместе с ней в клетках присутствует фермент фосфатаза фосфорилазы, [c.424]

    Из множества ферментов, регулируемых Са " , следует отметить протеинкиназы С, фосфорилирующие растворимые белки цитозоля, фосфодиэстеразы и аденилатциклазы, которые, в свою очередь, являются регуляторами процессов фосфорилирования белков. Связь Са с гормонами очевидна, так как при его дефиците действие гормонов прекращается. В приведенном выще примере фосфорилирования фосфорилазы b и перевода ее в активную форму существенную роль играет Са -кальмодулин. [c.138]

    Биохимические функции. Катехоламины действуют на клетки-мишени по мембрано-опосредованному механизму, чему в немалой степени способствует гидроксилирование кольца и боковой цепи этих соединений. Катехоламины взаимодействуют с а- и р-адренергическими рецепторами, локализованными в мембранах клеток-мишеней. Адреналин взаимодействует с обоими типами рецепторов, а норадреналин преимущественно с а-рецепторами. Каждая группа рецепторов разделяется на две подгруппы, а именно a и а2, а также (3 и Группа а[-, а2-рецепторов проявляет эффекты сосудосуживающего действия, сокращения гладких мышц, ингибирования липолиза. Действие р-рецепторов связано с активацией аденилатциклазы, образованием цАМФ и последующим фосфорилированием белков. Например, адреналин, взаимодействуя с р-рецепторами через систему вторичных посредников, активирует протеинкиназу, которая фосфорилирует ряд цитоплазматических белков. Таким образом, адреналин регулирует гликогенолиз в печени и в мышцах, а также глюконеогенез в печени. Мобилизация гликогена в мышцах происходит под действием фермента фосфорилазы, которая находится в виде неактивного димера (форма Ь) или активного тетрамера (форма а). Активированная посредством адреналина протеинкиназа фосфорилирует фермент киназу фосфорилазы Ь, что приводит к ее активации  [c.156]

    Катализируется эта реакция ферментом киназой фосфорютазы Ь, который также существует как в активной, так и неактивной формах. Активация киназы фосфорилазы Ь происходит подобно активации фосфорилазы, т. е. путем ее фосфорилирования, которое катализируется цАМФ-зависимой протеинкиназой (гл. 13). Важная роль в активации киназы фосфорилазы принадлежит также Са " -кальмодулину — белку, участвующему в регуляции активности многих киназ (гл. 13). Активация протеинкиназы при участии цАМФ, который, в свою очередь, образуется из АТФ в реакции катализируемой аденилатциклазой, стимулируется гормонами адреналином и глюкагоном. Увеличение содержания этих гормонов приводит в результате каскадной цепи реакций к превращению фосфорилазы Ь в фосфорилазу а и, следовательно, к освобождению глюкозы в виде глюкозо-1-фосфата из запасного полисахарида гликогена. Обратное превращение фосфорилазы а в фосфорилазу Ь катализируется ферментом протеинфосфатазой. На рис. 18.6 приведен каскадный механизм мобилизации гликогена. Активация первого фрагмента каскада — аденилатциклазы — в конечном счете активирует распад гликогена и одновременно ингибирует фермент его синтеза — гликогенсинтазу (гл. 20). Следовательно, фосфорилирование гликогенфосфорилазы и гликогенсинтазы приводит к противоположным изменениям их активности гликогенсинтаза ингибируется, а гликогенфосфорилаза активируется, что вызывает повышение содержания глюкозы в мышцах, печени и крови, т. е. происходит быстрое включение реакций, поставляющих энергию. [c.251]

    Ряд алкилагароз со структурой СНз(СН2)пМН—сефароза (где п принимает значения от О до 7), и-аминоалкилагароз со структурой ЫН2(СН2)п ЫН—сефароза (где п — от 2 до 8) характеризуется близким содержанием алкильных боковых цепей на гранулу геля [15, 49]. В одинаковых условиях (pH, ионная сила, состав буферного раствора и температура) способность СНз(СН2)пЫН—сефарозы удерживать фосфорилазу Ь зависит от длины углеводородных цепей. При хроматографии на производных сефарозы (я = 0 или 1) фосфорилаза Ь выходила из колонки с фронтом растворителя при п = 2 происходила задержка фермента, а при п = 3 фермент адсорбировался. Элюирование фосфорилазы Ь с модифицированной сефарозы (п = 3) возможно с помощью деформирующих буферных растворов, которые, как было показано, приводят к обратимым структурным изменениям фермента. На производном сефарозы с л = 5 связывание фосфорилазы было настолько сильным, что фермент не элюировался с колонки, даже когда pH деформирующего буферного раствора понижался до 5,8, хотя деформирующая способность такого буфера намного выше. Освободить фосфорилазу Ь из комплекса с этим производным можно только в неактивной форме после промывки колонки 0,2 М уксусной кислотой. Сама агароза содержит отрицательные заряды, а связывание алкил- или ариламинов на активированной бромцианом агарозе вводит в гель положительные заряды (разд. 8.2.4). В связи с этим йост и др. [28] обращали внимание на то, что на сефарозе с алкиламинами, прикрепленными после предварительной активации носителя бромцианом, связывание белков происходит большей частью при pH выше изоэлектрической точки выделяемых белков. Поэтому допускалось, что в этих случаях электростатические взаимодействия с положительно заряженной Ы-замещенной изомочевиной более существенны для связывания, чем гидрофобные взаимодействия с гидрофобной боковой цепью. Тем не менее гранулы агарозы не связывают фосфорилазу Ь, пока к ним не будут прикреплены алкильные боковые цепи некоторой минимальной длины. Кроме того, отмеченные выше заряды в равной мере присутствуют во всех членах гомологического ряда, и, следовательно, они не могут быть причиной различий в степени [c.152]

    Введение адреналина в организм сопровождается усилением распада гликогена и связанным с ним повышением содержания сахара в крови (гипергликемия) и выделением сахара с мочой (глюкозурия) (см. стр. 176). Механизм действия адреналина заключается в том, что адреналин способствует превращению неактивного фермента дефосфофосфори-лазы и активную форму — фосфорилазу (а-глюканфосфори-лаза). Фосфорилаза является тем ферментом, который катализирует расщепление гликогена на глюкоэо-Ьмоиофос-форный эфир (см. стр. 163). [c.91]


Смотреть страницы где упоминается термин Фосфорилаза формы: [c.143]    [c.91]    [c.32]    [c.507]    [c.508]    [c.153]    [c.425]    [c.425]    [c.426]    [c.264]   
Углеводы успехи в изучении строения и метаболизма (1968) -- [ c.262 ]




ПОИСК







© 2025 chem21.info Реклама на сайте