Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная кислота физико-химические основы

    ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОИЗВОДСТВА АЗОТНОЙ КИСЛОТЫ [c.176]

    Производство азотной кислоты. Физико-химические основы [c.244]

    Физико-химические основы производства HNOз. В основе процесса получения разбавленной азотной кислоты из аммиака лежат следующие реакции  [c.100]

    Физико-химические основы концентрирования азотной кислоты [c.78]

    Физико-химические основы синтеза азотной кислоты из аммиака [c.214]


    РАЗЛОЖЕНИЕ ФОСФАТОВ АЗОТНОЙ КИСЛОТОЙ Физико-химические основы процесса [c.635]

    Физико-химические основы концентрирования азотной кислоты 33. Технологическая схема концентрирования азотной кислоты.  [c.203]

    Как уже отмечалось, защитные свойства и работоспособность покрытий обеспечиваются не только химической стойкостью материала, но и его сорбционной способностью и диффузионными свойствами. Защитные свойства покрытий во многом определяются характером переноса среды в полимере, являющегося сложным процессом (если речь идет о растворах электролитов) и зависящего от физико-химических свойств как самого полимера, так и электролита. Оценивая защитные свойства покрытий в целом по отношению к летучим электролитам (соляная, уксусная, азотная кислоты) и нелетучим (серная и фосфорная кислоты, растворы солей, щелочи), можно заключить следующее более высокими защитными свойствами в отношении проницаемости летучих электролитов обладают покрытия на основе полярных (гидрофильных) густосетчатых полимеров (ЭД-20. ПН-15) большими защитными свойствами по отношению к нелетучим электролитам обладают неполярные (гидрофобные) полимеры, например полиолефины. [c.261]

    В монографии на современном уровне описана технология важнейших (крупнотоннажных) минеральных солей, в том числе минеральных удобрений — фосфор- иых, азотных, калийных и других, а также некоторых окислов и кислот (фосфорной, соляной и др.). Рассмотрены свойства сырья, полупродуктов и продуктов изложены физико химические основы производств описаны технологические схемы, режимы и аппараты. [c.2]

    ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ РАЗЛОЖЕНИЯ ФОСФАТОВ АЗОТНОЙ КИСЛОТОЙ [c.559]

    Физико-химические основы. Получение азотной кислоты из нитрозных газов и воды основано на реакции  [c.421]

    В качестве окислителя ракетных топлив обычно применяется 98—99%-ная азотная кислота, которая в иностранной литературе получила название белой дымящей азотной кислоты . Применяемая азотная кислота содержит различное количество четырехокиси азота. Предложено использовать в качестве окислителей системы, состоящие из окислов азота. Так, сообщалось об испытании окислителя, состоящего из тетранитрометана и четырехокиси азота. Физико-химические свойства окислителей на основе азотной кислоты, окислов азота и тетранитрометана приводятся в табл. 174. [c.386]

    Физико-химические основы производства концентрированной азотной кислоты прямым синтезом [c.102]


    B. И. Атрощенко, В. И. Кон вис ар и др. Физико-химические основы превращения окислов азота в азотную кислоту, Тезисы доклада на IV Республиканской конференции по физической химии, Киев, 1960 г. [c.75]

    Большов научно-техническое и промышленное значение представляет комплексный процесс азотнокислой переработки фосфатов с получением фосфорных удобрений, фтористых солей и редких земель, разработанный С. И. с сотрудниками (в нескольких вариантах). В этом процессе азотная кислота используется в двух направлениях для разложения фосфата и в качестве составной части конечного продукта — удобрения в виде нитрата. Этот метод может считаться наиболее передовым и перспективным технологическим процессом комплексного использования фосфатного сырья без отходов производства. За эту работу С. И. и сотрудники НИУИФ А. И. Логинова и А. М. Поляк были удостоены в 1941 г. Сталинской премии второй степени. Ими были также изучены схемы, в которых известь выделяется из азотнокислотного раствора при помощи сульфатов аммония и натрия, а также путем вымораживания нитрата кальция. Этот процесс позволяет получать концентрированные и сложные удобрения, в том числе тройное азотно-фосфорно-калийное удобрение типа нитрофоски. На основе физико-химического анализа процессов С. И. предложил утилизировать большую часть элементов, содержащихся в хибинском апатите (Изв. АН СССР, ОМЕН, серия хим., 1938, Л 1 Изв. АН СССР, ОХН, 1940, № 5 Докл. АН СССР, 1946, Д 8 и др.). [c.10]

    Физико-химические основы разложения фосфатов азотной кислотой [c.332]

    ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ КОНЦЕНТРИРОВАНИЯ СЛАБОЙ АЗОТНОЙ КИСЛОТЫ [c.202]

    Другими коррозионно стойкими сплавами на железной основе в условиях воздействия сильно агрессивных химических сред (серная, азотная, фосфорная, соляная кислоты и др.) являются кремнистый чугун и антихлор. Первый из них нестоек к кипящей концентрированной соляной и к плавиковой кислотам, а также к другим фтористым соединениям и крепким растворам щелочей. Антихлор устойчив к соляной кислоте до концентрации 20% и температуры кипения, но также нестоек в едких щелочах и плавиковой кислоте. Физико-механические свойства этих сплавов приведены в табл. 13. [c.103]

    Начатые в первой пятилетке исследования в области кислотной переработки фосфатов продолжались гнироким фронтом в НИУИФе, иа ряде вузовских кафедр и в других научных организациях. Детально изучались физико-химические основы и разрабатывался оптимальный технологический режим процессов разложения фосфатов серной, азотной, фосфорной, соляной и кремнефтористоводородной кислотами с получением экстрак-цпоиной фосфорной кислоты и концентрированных удобрений на ее основе двойного суперфосфата, преципитата, аммофоса, диаммофоса, нитроаммофоса, нитроаммофоски, нитрофоса, нитрофоски и карбоаммофоски. Одновременно проводились работы по совершенствованию технологии получения простого суперфосфата созданию непрерывного процесса, аммонизации и гранулированию. Решались проблемы выделения и утилизации фтора, редкоземельных элементов, стронция и других полезных примесей, содержащихся в фосфатном сырье. [c.146]

    Азотная кислота. В качестве окислителя ракетных топлив обычно применяется 98—99%-ная азотная кислота, в которой растворено 15—20% N204 для повышения ее стабильности. Самостоятельным окислителем является жидкий тетроксид N204. Физико-химические свойства окислителей на основе азотной кислоты, окисло] азота и тетранитрометаиа приводятся в табл. 38. 100%-ная азотная кислота неустойчива и довольно быстро разлагается при комнатной температуре по уравнениям [c.103]

    Для аналитических целей наиболее пригодны сильнокислотные или высокоосновные монофункциональные иониты на основе сополимеров стирола и дивинилбензола, которые являются достаточно инертными и устойчивыми материалами, так как практически не изменяют своих физико-химических свойств и не теряют существенно общей обменной емкости при эксплуатации их в агрессивных средах и достаточно жестких условиях. Зависимости коэффициентов распределения микроколичеств элементов от концентрации растворов обычных в аналитической практике кислот (соляной, азотной, фтористоводородной) для стирол-дивинилбен-зольных ионитов представлены в виде периодических таблиц [197, 403, 564, 723]. Изучено также поглощение элементов сильноосновными анионитами из растворов серной [1416], бромистоводородной [1307] и щавелевой [1033] кислот. Значения D для анионитов в ряде случаев достигают величины 10 . [c.297]

    Как э,то следует из приведенного списка, атомные веса, принятые Менделеевым для церия (140), эрбжя (178) и лантана (180), заметно отличаются от современных. Для атомного веса дидима Менделеев принял значение 138. Довольно близок к современному значению атомный вес (88), принятый для иттрия Однако изучение редких земель с помощью спектрального анализа, исследования Пера Теодора Клеве (1840—1905), профессора Упсальского университета, привело его к от-крытию в 1879 г. самария, эрбия, тулия и иттербия Наряду с этим исследования Ауэра фон Вельсбаха (1858—1929) открывшего празеодим и неодим в 1885 г., и Эжена Анатоля Демар-с э (1852—1904), открывшего в 1896 г. европий, и особенно аналитическое изучение группы редких земель, столь трудной для экспериментирования, сделали необходимым пересмотр таблицы Менделеева. К этому добавляется одно из самых сенсационных открытий химии второй половины XIX в. и притом в неожиданной области — открытие Рамзаем благородных газов в 1894—1898 гг. Это открытие имело в своей основе одно из наблюдений лорда Роберта Джона Рэлея, сына знаменитого физика Джона Уильяма Рэлея. Определяя плотность азота, нолученного химическим путем, и азота, полученного перегонкой жидкого воздуха, Рэлей заметил, что плотность последнего всегда несколько выше, чем первого. Так как Рэлей не мог предложить никакого объяснения этому факту, он сообщил о своем наблюдении в журнале Природа приглашая химиков дать необходимое объяснение. Это сообщение тотчас же привлекло внимание Рамзая, и он объединился с Рэлеем для того, чтобы отыскать истинную причину наблюдавшегося явления. Переработав значительное количество жидкого воздуха, лорд Рэлей и Рамзай объявили в 1894 г. об открытии нового элемента, который они назвали аргоном вследствие его химической инертности В этом отношении не следует забывать, что еще в 1785 г. Кавендиш, пропуская электрическую искру через смесь воздуха с кислородом в присутствии едкого кали, заметил, что после образования азотной кислоты, поглощенной едким кали, и удаления избытка кислорода получается незначительный остаток — /i2 полного [c.276]


    Шееле считал, что главная цель и задача химии заключается в том, чтобы разлагать вещества на составные части, изучать их свойства и различными способами соединять вещества вместе [28]. Шееле открыл многие органические кислоты винную (1769 г.), мочевую (1776 г.), молочную (1780 г), лимонную (1784г.), галловую (1786 г) из оливкового масла он выделил глицерин (1783 г.). При действии на глицерин азотной кислотой Шееле получил щавелевую кислоту, которую ранее он же обнаружил при окислении сахара азотной кислотой. Полученная Шееле щавелевая кислота оказалась тождественной кисличной кислоте, выделенной несколькими годами ранее Виглебом. Из красителя берлинская лазурь Шееле получил синильную кислоту. Полное собрание сочинений по физике и химии Шееле было опубликовано на немецком языке в Берлине в 1793 г. [29]. Примерно в то же время Лавуазье установил, что основными составными частями органических соединений являются углерод, водород и кислород. Эти качественные определения он дополнил количественными, заложив тем самым основы элементного анализа. Используемые им приемы были очень просты, но результаты оказывались достаточно хорошими. Это дало Лавуазье возможность сделать первые теоретические обобщения. Он обратил внимание на то, что в органических веществах группы атомов ведут себя как элементы, т. е. при химических превращениях не разлагаются на составные части. Такие группы Лавуазье назвал радикалами. Лавуазье, например, представлял себе органические кислоты как оксиды сложных радикалов .  [c.51]

    Вывод о вероятном электрофильном механизме реакций замещения в ароматическом ряду можно сделать уже на основе изучения природы замещающего агента. Наиболее подробно изучалась реакция нитрования ароматических углеводородов, и было высказано предположение, что истинным нитрующим агентом является катион нитрония NOI- Различными физико-химическими методами было показано, что при растворении азотной кислоты в концентрированной серной кислоте устанавливается равновесие  [c.361]


Смотреть страницы где упоминается термин Азотная кислота физико-химические основы: [c.319]    [c.7]    [c.14]    [c.29]    [c.13]   
Основы химической технологии (1986) -- [ c.212 ]




ПОИСК





Смотрите так же термины и статьи:

ПРОИЗВОДСТВО АЗОТНОЙ КИСЛОТЫ И АЗОТНЫХ СОЛЕЙ Контактное окисление аммиака Физико-химические основы процесса конверсии аммиака

Производство азотной кислоты физико-химические основы

Физико-химические основы концентрирования слабой азотной кислоты

Физико-химические основы процесса разложения фосфатов азотной кислотой

Физико-химические основы разложения фосфатов азотной кислотой

Физико-химические основы синтеза азотной кислоты из аммиака



© 2025 chem21.info Реклама на сайте