Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрессивные среды химически активные

    Под старением понимают самопроизвольное необратимое, обычно неблагоприятное, изменение свойств материала при хранении и эксплуатации, приводящее к потере им работоспособности. Старение является результатом воздействия на полимер энергетических (тепло, свет, радиация, механические напряжения и т. д.) или химических (кислород и другие химически активные вещества) факторов. В зависимости от того, какой из этих факторов является определяющим, различают тепловое, световое и другие виды старения. В эксплуатационных условиях на изделия обычно действуют одновременно несколько факторов, в результате чего через некоторое время происходит потеря их работоспособности. Практически важным случаем старения является одновременное воздействие механических напряжений и агрессивной среды, в частности утомление при многократных деформациях в активной среде, разрушение при трении и износе в агрессивной среде, химическая релаксация. [c.125]


    Силицированный графит - коррозионно- и эрозионностойкий материал. Его применяют для изготовления упорных и радиальных подшипников и уплотнительных колец для химических агрегатов и различных насосов, перекачивающих агрессивные и эрозионные жидкости. Он широко применяется в качестве защитной арматуры термопар погружения при плавке металлов, а также для изготовления футеровки, стойкой в окислительных средах. Добавка бора (до 15 %) в кремний, который применяется в процессе силицирования, приводит к получению так называемого боросилицированного графита. При этом увеличивается твердость образующегося карбида кремния, повышается термостойкость и химическая стойкость силицированного г фита. Боросилицированный графит применяют для изготовления чехлов для термопар, тиглей, нагревателей, стопоров, стаканов, трубок и других деталей, установок для непрерывного литья металлов и их сплавов импеллеров для перемешивания расплавов футеровки печей, форсунок и газовых горелок форм для разливки металлов упорных и радиальных подшипников, торцевых уплотнений и крыльчаток насосов труб, фитингов фаз и насадок для распыления абразивных химически активных веществ. [c.249]

    Полиолефины — полиэтилен (ГОСТы 16337—Т1 и 16338—77), полипропилен, полистирол (ГОСТ 20282—74) — используют преимущественно в качестве футеровочиых материалов в средах средней и повышенной коррозионной активности. Из полиформальдегида, отличающегося высокой износостойкостью и повышенным пределом выносливости, изготовляют арматуру, зубчатые колеса и различные, детали сложной конфигурации. Фенопласты — пластические массы широкого ассортимента на основе фенолформальдегидных смол — применяют для получения различных технических изделий методами прессования и литья под давлением, слоистых полимеров, пленок, связующих, лаков и т, д., в чa тнo ти текстолита (композиционный конструкционный материал, оЗладающий высокими прочностью и устойчивостью во многих агрессивных средах), сохраняющего свои свойства в интервале температур —195... +125 X. Фторопласты (ГОСТ 10007—80) обладают химической стойкостью к минеральным и органическим кислотам, щелочам и органическим растворителям, а также имеют низкий коэффициент трения из фторопластов изготовляют ленты, пленки, прессованные изделия профильного типа, трубы, втулки и т. п. [c.103]

    В отличие от физически активных сред химически активные агрессивные среды при контакте с полимерным материалом вызывают необратимые изменения химической структуры полимеров. Совокупность химических процессов, приводящих под действием агрессивных сред к изменениям химической структуры полимера, его молекулярной массы, называют химической деструкцией [7, с. 10]. [c.12]


    При длительных испытаниях физические и химические процессы становятся сравнимыми по своей значимости и влиянию на конечный исход — на разрушение материала. Могут быть случаи, когда под воздействием химически активных (агрессивных) сред химические процессы протекают так интенсивно, что разрушение определяется не только, а часто даже не столько механическими факторами, сколько химическими. Наблюдаемые при этом закономерности, естественно, оказываются весьма сложными. [c.163]

    Ассортимент анодных материалов расширяется за счет использования углеграфитов и тех оксидов металлов, которые, будучи полупроводниками, обладают достаточно высокой электропроводностью, химической устойчивостью в агрессивных средах, каталитической активностью в реакции, протекающей на аноде. [c.28]

    Современные достижения науки и техники в области высокомолекулярных соединений позволяют решать задачи получения конструкционных материалов с заданными свойствами и устранять некоторые недостатки, которые ограничивали щирокое применение полимерных материалов в химическом машиностроении. К числу этих недостатков относятся окисляемость при действии агрессивных сред, содержащих активный кислород ограниченный температурный интервал использования, в особенности в области повышенных температур низкая теплопроводность недостаточно высокая механическая прочность. [c.81]

    В основу классификации торцовых уплотнений положены динамические характеристики и особенности их упругих элементов (пружин с манжетами и резиновыми кольцами, упругих прокладок, сильфонов и мембран с пружинами и без пружин и др.). Различают одинарные, двойные и тройные торцовые уплотнения. Наиболее часто используют одинарные уплотнения, реже двойные и очень редко тройные. Тройные торцовые уплотнения применяют для герметизации крупных турбокомпрессоров, двойные торцовые уплотнения—для герметизации оборудования с химически активными жидкостями и газами. Одинарные уплотнения используют при работе с нейтральными (водой, нефтепродуктами) и с некоторыми агрессивными средами. [c.80]

    Конструкционные материалы на основе УВ сочетают в себе небольшую удельную массу, высокую механическую прочность при высоких температурах, химическую стойкость в агрессивных средах, тепло-электрофизические, антифрикционные свойства, а также высокую анизотропию, устойчивость к радиационному излучению и высокую адсорбционную активность[3]. [c.182]

    Защитные детали из резины (кожухи, гармошки, колпачки, концевые муфты, пыльники) выполняют роль защитной оболочки от агрессивного воздействия среды. Для повышения износостойкости деталей машин, работающих в абразивных, гидроабразивных, химически активных средах, их покрывают (гуммируют) специальными резинами. [c.8]

    По химическому составу полиэтилен отвечает предельным углеводородам. Поэтому он является веществом мало активным и обладает высокой стойкостью по отношению к агрессивным средам (кислотам, щелочам, растворам солей). Он является также очень хорошим диэлектриком. Размягчается в зависимости от способа получения при 105—130 С. [c.202]

    Химические свойства. Титан, цирконий и гафний представляют очень большой интерес в связи С тем, что их восстановительная активность весьма сильно зависит от температуры. При обычных температурах титан, цирконий и гафний имеют чрезвычайно низкую восстановительную активность и обладают высокой коррозионной устойчивостью в большинстве агрессивных сред. С повышением температуры восстановительная активность металлов растет и у титана при температуре его плавления является одной из самых высоких среди металлов. [c.79]

    При рассмотрении физических свойств простых веществ подчеркивалось, что они в основном присущи макроскопическим количествам вещества (особенно в конденсированном состоянии). Что же касается химических свойств, то они главным образом определяются свойствами атомов или молекул, поскольку химическое взаимодействие всегда протекает на атомном или молекулярном уровне. Однако реально наблюдаемая химическая активность твердых простых веществ в заметной мере зависит, например, от величины поверхности соприкосновения, ее состояния, структуры кристалла и т. п., т. е. опять-таки от макроскопических характеристик. Так, мелкодисперсный цинк (цинковая пыль) значительно энергичнее взаимодействует с кислотами, чем гранулированный. Например, цинковая пыль восстанавливает азотную кислоту до аммиака, а гранулированный цинк — только до низших оксидов азота. Хорошо известна также способность многих металлов (А1, Ре, Т1, Сг и т. п.) к пассивации в агрессивных окисляющих средах, хотя сами эти [c.38]

    Взаимодействие d-металлов с водой, кислотами и и елочами. Взаимодействие с агрессивными средами определяется как химической. активностью металла, так и степенью пассивации, его поверхности оксидными пленками. Наиболее сильно пассивируется хром. Степень его пассивации можно оценить по электродному потенциалу в пассивном состоянии 1,2 —1,3 В. Стандартный потенциал хрома в активном состоянии -> /зС.г +-)-е —0.74 В, а потен- [c.349]


    Скорость химической коррозии зависит от химической активности (агрессивности) среды, температуры и некоторых других условий. [c.454]

    Химические свойства простых веществ. При рассмотрении физических свойств простых веществ подчеркивалось, что они в основном присущи макроскопическим количествам вещества (особенно в конденсированном состоянии). Что же касается химических свойств, то они главным образом определяются свойствами атомов или молекул, поскольку химическое взаимодействие всегда протекает на атомном или молекулярном уровне. Однако реально наблюдаемая химическая активность твердых простых веществ в заметной мере зависит, например, от величины поверхности соприкосновения, ее состояния, структуры кристалла и т.п., т.е. опять-таки от макроскопических характеристик. Так, мелкодисперсный цинк (цинковая пыль) значительно энергичнее взаимодействует с кислотами, чем гранулированный. Например, цинковая пыль восстанавливает азотную кислоту до аммиака, а гранулированный цинк — только до низших оксидов азота. Хорошо известна также способность многих металлов (А1, Ре, Т1, Сг и др.) к пассивации в агрессивных окисляющих средах, хотя сами эти металлы достаточно активны. Кроме того, различные модификации одного и того же простого вещества могут заметно различаться по химической активности (например, белый и красный фосфор). Таким образом, химические свойства простых веществ представляют собой единство атомной, молекулярной и кристаллической форм химической организации со всеми характерными для них особенностями. [c.249]

    Взаимодействие й- металлов с водой, кислотами и щелочами. Взаимодействие с агрессивными средами определяется как химической активностью металла, так и степенью пассивации его поверхности оксидными пленками. Наиболее сильно пассивируется хром. Степень его пассивации можно оценить, по электродному потенциалу [c.363]

    Цементный камень затвердевшего портландцемента сложен веществами, обладающими определенной химической активностью и склонными к различным химическим реакциям с окружающей средой. Так как по своему характеру продукты гидратации минералов, портлаидцемента представляют собой водные силикаты, алюминаты и ферриты кальция, а также гидроксид кальция, то в целом вещество цементного камня является щелочным по характеру. Большинство соединений в цементном камне устойчиво существуют при значения pH>11 и в присутствии определенной концентрации ионов Са2+. При отсутствии химически агрессивной среды необходимое значение pH и концентрации иоиов Са + обеспечивается существованием в порах цементного камня и у его поверхности (если он находится в воде) насыщенного раствора Са(0Н)2, образующегося в результате растворения небольшой части гидроксида кальция, который выделяется при гидролизе клинкерных минералов. [c.124]

    Образование сквозных трещин в защитных полимерных покрытиях при контакте с химически активными средами является частным случаем распространенного процесса растрескивания покрытий под действием механических напряжений и агрессивных сред — коррозионного растрескивания. Коррозионное растрескивание полимеров имеет место при одновременном действии на материал растягивающих напряжений и агрессивной среды. Начинается процесс с зарождения дефектов и их постепенного развития в одну или несколько магистральных трещин. Дефекты в полимерном покрытии могут возникать в процессе изготовления или в процессе эксплуатации, например в результате химической деструкции. [c.48]

    В АТМ-10 отсутствует связующая смола, поэтому его химическая стойкость значительно выше, чем АТМ-1. АТМ-10 стоек во всех кислых и щелочных средах, а также во многих окислительных средах, в том числе в средах активного хлора, брома, фтора и сильных окислителей. Разрушение АТМ-10 под воздействием агрессивных сред аналогично разрушению графита, т. е. разрушение происходит только с поверхности и без набухания. [c.21]

    При биологическом С. п. агрессивность внеш. среды проявляется в обрастании полимеров грибами, бактериями и др. микро- и макроорганизмами (в т. ч. в водных средах), а также в воздействии химически активных в-в (ферменты, ионы), выделяемых живыми организмами. Таким эффектам подвергаются, напр., полимерные материалы, введенные в живой организм для лечения или протезирования. [c.415]

    Выбор конструкционных материалов и его экономическое обоснование. Выбор материала определяется рабочим давлением, температурой стенки аппарата, химическим составом и свойствами среды (коррозионной активностью, взрывоопасностью, токсичностью и т. д.). Часто выбор того или иного материала зависит не от агрессивности среды, а от влияния ма- [c.16]

    Электролитическое осаждение. Материалы для изготовления копий (готовых изделий или инструментов) выбирают с учетом современного уровня электрохимии, технической и экономической целесообразности и требований к физическим, химическим и механическим свойствам. В процессе электролитического осаждения материалы для копий должны сохранять электрическую проводимость (или каталитическую активность при химическом восстановлении металла), не искажать форму и легко отделяться от нее, допускать механическую обработку и выдерживать требуемые эксплуатационные нагрузки, не разрушаться в агрессивной среде, в которой будут эксплуатироваться, не изменять свою структуру. [c.9]

    Ингредиенты резиновых смесей существенно влияют на стойкость резин к набуханию. Увеличение дозировок техуглерода и неактивных наполнителей сокращает содержание каучука в резине и повышает ее стойкость к набуханию. Активный техуглерод марок П-324, П-234, К-354 с большой удельной геометрической поверхностью и развитой структурой снижает диффузию жидкостей в каучуки. Введение каолина повышает маслостойкость, барита и техуглерода — химическую стойкость. Присутствие пластификаторов увеличивает набухание, поэтому их дозировки сокращают и подбирают вещества, не растворяющиеся в данной агрессивной среде. Повышенное содержание связанной среды, введение ультраускорителей или активных ускорителей повышает стойкость резин к набуханию. Защитные коллоиды (казеин, столярный клей) также увеличивают стойкость к набуханию. [c.201]

    Необыкновенная стойкость нержавеющих хромистых и хромоникелевых сталей объясняется, прежде всего, их способностью пере-у ходить в пассивное состояние благодаря высокому содержанию хрома. Примеси других элементов (молибден, медь) придают хромоникелевым сталям различные специальные свойства и высокую стойкость против коррозии даже в активном состоянии (см. гл. 2.5.). Одной из серьезных причин, ограничивающих срок службы изделий из нержавеющих сталей, является склонность к межкристаллитной коррозии. Чаще всего приходится встречаться с межкристал-лптной коррозией аустенитных сталей в связи с их широким применением в агрессивных средах химической промышленности. Межкристаллитная коррозия проявляется неодинаково у отдельных групп нержавеющих сталей, различающихся не только по основному химическому составу, но и по структуре, а следовательно, и по другим свойствам [232, 241, 244]. [c.27]

    Большое значение для науки и техники имеют кобальтсодержащие сплавы жаропрочные, магнитные, а также химически активные. Примером инертного сплава может быть виталлнум (65% Со 25% Сг, 3% N1, 4% Мо), который служит материалом для деталей реактивных двигателей и газовых турбин, так как не подвергается корродированию в агрессивных газовых средах почти до 1000°С. Добавки кобальта к стали делают ее самозакаливающейся . Некоторые кобальтовые сплавы по химической инертности приближаются к платине. Незаменимы сверхтвердые сплавы на основе кобальта, который как бы цементирует зерна карбидов вольфрама и титана и придает сплаву свойства монолита. Среди таких сплавов интересен стеллит ( стелла — звезда по-латыни), который содержит 35—55% Со, 20—357о Сг, 9—15% Ш, 4—15% Ре, 2% С. Свое название он получил благодаря тому, что на воздухе не окисляется и поэтому ч<блестит как звезда . Твердость стеллита приближается к твердости алмаза, он пригоден для резки любых металлов. Стеллит используют не только для изготовления режущего инструмента, но и для сварки деталей, поскольку он, подобно витал-лиуму, не окисляется при высоких температурах. [c.137]

    Последний быстро гидролизуется уже на воздухе. Однако благодаря высокой хим, активности атомы хлора можно замещать на разл. орг. радикалы (напр., ОЯ, КНЯ, 8К, алкил) обработкой полидихлорфосфазена спиртами, алкоголятами, фенолятами, аминами, металлоорг. соединениями. Получаемые в результате полиорганофосфазены в большинстве случаев химически инертны, раств. в орг. р-рителях. В зависимости от природы боковых радикалов могут обладать св-вами пластиков или каучуков. Многие П. могут находиться в жидкокристаллич. состоянии, в к-рое они переходят из кристаллич. состояния при т-ре T (см. табл.). Применяют полиорганофосфазены для получения эластомеров, эксплуатируемых при низких т-рах и в агрессивных средах. На практике для этих целей чаще используют сополимерные перфторалкоксифосфазены. После введения в них 30-40% по массе наполнителя (аэросил, глина или А12О3), стабилизатора и послед, вулканизации получают нехрупкие при т-рах ниже —100 С материалы, имеющие модуль упругости при 100%-ном удлинении 3,5-10,5 МПа, о раст 7-14 МПа, относит, удлинение 100-200% они устойчивы к действию топлив, масел и гидравлич. жидкостей. Из них изготовляют фланцевые уплотнители, герметизирующие и демпфирующие прокладки, манжеты и шланги для топлива в авиационной и др. отраслях пром-сти. [c.37]

    При рассмотренных выше режимах испытаний разрушение полимера представляет собой в основном физический процесс. Изменения структуры материала, происходящие в процессе разрушения, сводятся главным образом к изменению степени ориентации или к переходу полимера из аморфного состояния в кристаллическое. Разделение образца на части происходит с сохранением химического состава основной массы макромолекул. Однако при разрушении образца полимера, по-видимому, почти всегда разрушается какая-то доля макромолекул, а в случае полимера с развитой пространственной структурой вообще немыслимо представить себе этот процесс без разрыва химических связей. Разрыв химических связей представляет собой механо-химическую реакцию. Образующиеся при разрыве макрорадикалы быстро реагируют с кислородом воздуха или с другими молекулами. При длительных испытаниях физические и химические процессы уже сравнимы по своей значимости и влиянию на конечный исход—на разрушение материала. Могут быть случаи, когда под воздействием химически активных (агрессивных) сред химические процессы протекают так интенсивно, что разрушение определяется не только, а часто даже не столько механическими факторами, сколько химическими. Наблюдаемые при этом закономерности, естественно, оказываются весьма сложными. [c.149]

    По своему положению в ряду напряжений свинец является довольно активным металлом. Однако он пассивируется во многих агрессивных средах (например, НаЗО , НР, Н2РО4, НаСгО ), в которых на поверхности металла образуются толстые пленки нерастворимых соединений свинца, создающих диффузионный барьер (см. определение 2 в гл. 5). Коррозионная стойкость свинца в указанных кислотах достаточна в тех случаях, когда не происходит эрозии защитной пленки за счет быстрого движения металла или кислоты. Свинец находит широкое применение, например в химической промышленности как футеровочный материал, а также для трубопроводов. [c.357]

    Диафрагмовые (мембранные) насосы. Эти пасосы (рис. 111-18) относятся в поршневым насосам простого действия и применяются для пере-качиванпя суспензий и химически агрессивных жидкостей. Цилиндр 1 и плунжер 2 насоса отделены от перекачиваемой жидкости эластичной перегородкой 3 — диафрагмой (мембраной) из мягкой резины или специальной стали, вследствие чего плунжер не соприкасается с перекачиваемой жидкостью и не подвергается воздействию химически активных сред или эрозии. Прн движении плунжера вверх диафрагма под действием разности давлений по обе ее стороны прогибается вправо и жидкость всасывается в насос через шаровой клапан 4. При движении плунжера вниз диафрагма прогибается влево и жидкость через нагнетательный клапан 5 вытесняется в напорный трубопровод. Все части насоса, соприкасающиеся с перекачиваемой жидкостью — корпус, клапанные коробки, шаровые клапаны, изготовляют из кислотостойких материалов или защищают кислотостойкими покрытиями. [c.144]

    Для обеспечения долговечности цементного кольца необходимо, чтобы затвердевший тампонажный раствор сохранял прочность и непроницаемость при воздействии минерализованных пластовых вод. Цементный камень с активной добавкой глины или высокодисперсных окислов показал достаточную коррозионную стойкость в агрессивных средах [317, 318]. Это связано с более плотной дисперсной структурой, с изменением фазового состава и степени закристаллизованности гидратных фаз по сравнению с камнем, приготовленным из чистого цемента. Необходимо отметить, что добавка глин с повышенным содержанием окислов алюминия (типа као-линитовых) обусловливает меньшую химическую стойкость цементного камня против сульфатной коррозии вследствие образования ими дополнительного количества гидросульфоалюминатных фаз [317,319]. [c.117]

    Электроформование. Материалы для изготовления копий выбирают с учетом технической и экономической целесообразности и требований, предъявляемых к физическим, химическим и механическим свойствам материала. В> процессе электроосаждения толстых слоев эти материалы должны сохранять электропроводимость (или каталитическую активность при химическом восстановлении), не искажать форму и легко отделяться от нее, допускать механическую обработку, не разрушаться в агрессивной среде, в которой будут эксплуатироваться. [c.341]

    Высказано положение, что при механическом нагружении сталей в агрессивных средах, содержащих ингибиторы коррозии, существует конкуренция двух противоборствующих факторов разупрочнение Материала из-за адсорбционного снижения поверхностной энергии и упрочнение в связи с адсорбционным ингибированием локальной коррозии. Преобладание одного из этих факторов зависит от уровня адсорбщюнной и ингибирующей активности веществ. Так, при явно выраженной химической адсорбции, когда образуются адсорбционные пленки с высокой защитной способностью j преобладает адсорбционное упрочнение. При обратимой (физической) адсорбции, когда ингибирующее действие незначительно, возможно преобладание адсорбционного разупрочнения (тог а проявляется эффект Ребиндера). Поскольку физическая и химическая адсорбции взаимосвязаны и адсорбция во многих случаях обусловливает ингибирование коррозии, эффект Ребиндера вследствие введения в средьг ингибиторов, как правило, не проявляется [69]. В настоящее время подобран ряд достаточно эффективных ингибиторов, существенно повышающих сопротивление металлов и сплавов коррозионному растрескиванию [8,19]. [c.109]

    Процессы химической деструкции полимерных материалов протекают в химически активных средах и в этом случае, помимо процессов проницаемости агрессивных сред, контролирующих подпле-ночную коррозию и адгезионную прочность покрытий, возможно нарушение сплошности покрытий, т. е. первое предельное состояние. [c.47]

    В работе А. В. Карлашова подтверждено влияние среды на предел выносливости стали марки 20Х. Установлено, что жидкие среды снижают выносливость стали и это снижение зависит от активности среды и диаметра образца. Проявление масштабного фактора в зависимости от активности среды, воздействующей на поверхности образца, различно. Так в поверхностно-активных, нО химически не агрессивных средах (смазочные масла) с увеличением диаметра образца выносливость снижается, а в коррозионно-агрессивных средах с увеличением диаметра образца выносливость повышается. [c.89]

    К жидким химически агрессивным средам относятся растворы кислот, оснований и солей. Из них менее ряспространенными и менее активными являются соли. Действие кислых и основных солей можно в первом приближении рассмятриват . как действие слабых кислот и оснований. Некоторые кислоты и соли проявляют окислительное действие но отношению к по.аимерам. Мерой окислительной активности таких сред является окислительный электрохимический потенциал. [c.276]

    Действие химически агрессивных сред заключается в способности полимеров вступать с ними в химические реакции. Это определяется прежде всего не длиной макроцепей, а наличием активных центров (гидроксильных, карбоксил1.ных, аминных и других групп, двойнЕ)1х и других связей, подверженных легким изменениям). [c.276]

    Ингибиторы коррозии металлов. Применение ингибиторов — один из эффективных способов борьбы с коррозией металлов в различных агрессивных средах (в атмосферных, в морской воде, в охлаждающих жидкостях и солевых растворах, в окислительных условиях и т.д.). Ингибиторы — это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от лат. inhibere, что означает сдерживать, останавливать. Ингибиторы взаимодействуют с промежуточными продуктами реакции или с активными центрами, на которых протекают химические превращения. Они весьма специфичны для каждой группы химических реакций. Коррозия металлов — это лишь один из типов химических реакций, которые поддаются действию ингибиторов. По современным представлениям защитное действие ингибиторов связано с их адсорбцией на поверхности металлов и торможением анодных и катодных процессов. [c.150]

    Полиизобутилены — предельные углеводороды, поэтому они обладают высокой стойкостью к действию ряда агрессивных сред. Они растворимы в маслах, алифатических и ароматических углеводородах. В изделиях полиизобутилены используются в невулканизованном состоянии. Введение активных наполнителей (технического углерода, графита) способствует повышению химической стойкости и прочностных показателей. Молекулярная масса и прочность выпускаемых в СССР полиизобутиленов приведены в табл. 13.5. [c.208]


Смотреть страницы где упоминается термин Агрессивные среды химически активные: [c.393]    [c.393]    [c.103]    [c.103]    [c.243]    [c.208]    [c.277]    [c.14]   
Химическая стойкость полимеров в агрессивных средах (1979) -- [ c.9 , c.235 , c.249 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Агрессивность среды

Активность среды



© 2025 chem21.info Реклама на сайте