Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические основы процесса концентрирования

    Физико-химические основы и принципы расчета процессов кристаллизации. Кристаллизация — процесс выделения твердых веществ из насыщенных растворов или расплавов. В процессе кристаллизации используется различие составов равновесных твердой и жидкой фаз. Проведение процесса кристаллизации из растворов основано либо на использовании зависимости растворимости твердого вещества от температуры, либо на удалении растворителя нз насыщенного раствора путем его выпаривания. Чаще всего растворимость твердых веществ с понижением температуры уменьшается, поэтому при проведении процесса по первому способу раствор необходимо охлаждать. По второму способу кристаллизация проводится при практически постоянной температуре. Процесс кристаллизации путем охлаждения раствора обычно сочетается с выпариванием раствора, оставшегося после выделения твердой фазы (маточного раствора), для его концентрирования до первоначального состава. [c.482]


    В эти же годы начинается изучение физико-химических основ и разработка технологического режима процесса разложения фосфатного сырья различными кислотами для получения экстракционной фосфорной кислоты, концентрированных и комплексных минеральных удобрений на основе фосфора двойного супер фосфата, аммофоса, нитроаммофоски и других. В 1934 году в Воскресенске и 1936 году в Актюбинске введены в строй цехи по производству концентрированного фосфорного удобрения — преципитата. В результате к 1940 году производство фосфорных удобрений в стране составило 1,4 млн. тонн суперфосфата и [c.247]

    В настоящее время экстракцию широко используют для концентрирования одного или нескольких компонентов, разделения близких по свойствам веществ и очистки вещества. Ее применяют в процессах переработки нефти для разделения ароматических и алифатических углеводородов, в химической технологии, в том числе для разделения изомеров, обезвоживания уксусной кислоты, при получении различных лекарственных препаратов, например антибиотиков, и др. Особенно успешно используется экстракция в гидрометаллургии в технологии урана, бериллия, меди, для разделения близких по свойствам металлов — редкоземельных элементов (циркония и гафния, тантала и ниобия), никеля и кобальта и т. д. Экстракционные методы применяют для опреснения воды, переработки промышленных сбросов с целью их обезвреживания, а также использования их полезных компонентов. Наконец, экстракция широко используется в аналитической химии и как метод физико-химического исследования. В настоящее время на основе химических и физико-химических представлений можно подобрать экстрагент для извлечения практически любого органического или неорганического соединения. [c.6]

    Метод обратного осмоса по физико-химической природе процесса, лежащего в его основе, отличается от других баромембранных методов. Для его понимания достаточно вспомнить сущность явления осмоса — движение растворителя через мембрану из раствора с низкой концентрацией солей в концентрированный раствор (рис. 3.16). [c.224]

    Изложены общие теоретические основы аналитической химии и качес1 венный анализ. Рассмотрены гетерогенные (осадок — раствор), протолитические, окислительно-восстановительные равновесия, процессы комплексообразования, применение органических реагентов в аналитической химии, методы разделения и концентрирования, экстракция, некоторые хроматографические методы, качественный химический анализ катионов и анионов, использование физических и физико-химических методов в качественном анализе. Охарактеризованы методики аналитических реакций катионов и анионов, нх идентификация по ИК-спектрам поглощения. Приведены примеры и задачи. [c.2]


    Физико-химические основы молекулярно-ситовой хроматографии. Если раствор, содержащий молекулы различного размера, ввести в колонку, то молекулы стремятся диффундировать из более концентрированного внешнего раствора в растворитель, находящийся в порах геля. В статических условиях этот процесс будет проходить до тех пор, пока не установится равновесие. При протекании раствора через колонку молекулы образца будут проникать в поры геля, если концентрация их снаружи больше, чем внутри геля. Когда зона растворенного вещества покинет данный участок геля, концентрация компонента внутри геля станет больше, чем его концентрация снаружи, и мо- [c.70]

    Физико-химические основы процесса концентрирования [c.162]

    ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССА КОНЦЕНТРИРОВАНИЯ СЕРНОЙ КИСЛОТЫ ПУТЕМ УПАРИВАНИЯ [c.180]

    IV. Физико-химические основы процессов извлечения и концентрирования двуокиси серы [c.35]

    В книге описаны современные схемы производства серной кислоты контактным и башенным способами из различного сырья, рассмотрено концентрирование серной кислоты, производство концентрированных сернистого и серного ангидридов. В ней освеш,ены также физико-химические основы процессов, описаны новые аппараты, разработанные в последние годы, методы автоматического контроля и регулирования процессов, важнейшие методы расчетов. В приложениях приведены справочные данные, требуемые для расчетов. [c.2]

    Большов научно-техническое и промышленное значение представляет комплексный процесс азотнокислой переработки фосфатов с получением фосфорных удобрений, фтористых солей и редких земель, разработанный С. И. с сотрудниками (в нескольких вариантах). В этом процессе азотная кислота используется в двух направлениях для разложения фосфата и в качестве составной части конечного продукта — удобрения в виде нитрата. Этот метод может считаться наиболее передовым и перспективным технологическим процессом комплексного использования фосфатного сырья без отходов производства. За эту работу С. И. и сотрудники НИУИФ А. И. Логинова и А. М. Поляк были удостоены в 1941 г. Сталинской премии второй степени. Ими были также изучены схемы, в которых известь выделяется из азотнокислотного раствора при помощи сульфатов аммония и натрия, а также путем вымораживания нитрата кальция. Этот процесс позволяет получать концентрированные и сложные удобрения, в том числе тройное азотно-фосфорно-калийное удобрение типа нитрофоски. На основе физико-химического анализа процессов С. И. предложил утилизировать большую часть элементов, содержащихся в хибинском апатите (Изв. АН СССР, ОМЕН, серия хим., 1938, Л 1 Изв. АН СССР, ОХН, 1940, № 5 Докл. АН СССР, 1946, Д 8 и др.). [c.10]

    Таким образом, на основе термодинамики неравновесных процессов рассмотрена кинетика контактных взаимодействий в концентрированных дисперсных системах с твердой фазой в динамических условиях. Показано, что кинетика контактных взаимодействий зависит от величины энергии активации, которая, в свою очередь, определяется свободной энергией частиц твердой фазы и законом подвода энергии к системе. Следует подчеркнуть, что термодинамический подход открывает новые возможности для выяснения физико-химической сущности процесса структурообразования. [c.250]

    Современная химическая технология изучает производства самых различных веществ продуктов переработки нефти, каменного угля и природного газа, органических и неорганических веществ, полимерных и других материалов. В перечисленных и многих других технологиях, помимо собственно химических превращений, используются типовые процессы перемещения жидкостей и газов (паров), разделения гетерогенных смесей, нагревания и охлаждения, концентрирования растворов твердых веществ, разделения газовых (паровых) и жидких смесей, обезвоживания капиллярно-пористых материалов, растворения, кристаллизации и др. Все эти процессы имеют одинаковую физическую и физико-химическую основу независимо от свойств взаимодействующих веществ, поэтому методы анализа и расчетов и аппаратурное оформление также оказываются одинаковыми. [c.9]

    М. Л. Чепелевецкий и Е. Б. Бруцкус внесли существенный вклад в интенсификацию непрерывного способа получения суперфосфата на основе глубокого физико-химического анализа процесса сернокислотного разложения фосфатов. Применение концентрированной серной кислоты позволило значительно улучшить качество суперфосфата. [c.150]

    Особенности производства и потребления готовой продукции. Получение сливочного масла из стойкой жировой эмульсии молочного жира (сливок) — сложный физико-химический процесс. Основой технологии является концентрирование жировой фазы сливок и пластификация получаемого на промежуточных стадиях продукта. Существует два способа концентрации жировой фазы сливок в холодном состоянии — сбиванием и горячем — сепарированием. [c.191]


    Накопление окислов железа и марганца на поверхности бактериальных клеток — результат двух взаимосвязанных процессов аккумуляции (поглощения) клетками этих металлов из раствора и окисления, сопровождающегося обильным отложением нерастворимых окислов на поверхности бактерий. Процесс аккумуляции тяжелых металлов из растворов в основе имеет физико-химическую природу и в значительной мере обусловлен химическим составом и свойствами поверхностных структур клетки. Он включает связывание металлов внеклеточными структурами (капсулы, чехлы, слизистые выделения), клеточной стенкой и ЦПМ. Сорбционные свойства поверхностных клеточных структур определяются в большой степени суммарным отрицательным зарядом молекул, входящих в их состав. Поглощение металлов приводит к значительному концентрированию их вокруг клеток по отношению к среде. Коэффициент накопления для железа и марганца может достигать значений 10 —10 . [c.376]

    Достаточно надежным способом предотвращения потерь примесей при отгонке основы является медленное проведение процесса И присутствии коллектора. Коллектором примесей может служить, как и в общем случае, специально вводимое перед испарением пробы диспергированное вещество. Но обычно проводится частичная отгонка основы с концентрированием примесей в остатке. В последнем случае для получения воспроизводимого веса остатка важно тщательно стандартизировать процессы испарения пробы и ее подготовки. В частности, скорость сублимации или гетерогенной реакции зависит как от температуры процесса и условий удаления реакционных продуктов (паров), так и от физико-химической формы основы и ее дисперсности (рис. 85). [c.256]

    Приведенные в книге данные показывают, что кристаллизационное концентрирование имеет преимущества по сравнению с другими методами аналитического обогашения, прежде всего, при определении химических аналогов основы и неметаллических примесей в чистых веществах. Для концентрирования поливалентных катионов в солях щелочных металлов существуют хорошо изученные и весьма эффективные химические и электрохимические методы. Однако и в этих случаях применение управляемой кристаллизации может быть оправдано необходимостью автоматизации процесса, снижения уровня общего фона, экономии анализируемого материала. Разумеется, возможность осуществления кристаллизационного концентрирования примесей зависит от физико-химических свойств анализируемого вещества-его температуры [c.174]

    Физико-химические и методические основы адсорбционно-комплексообразовательного хроматографического метода были освещены в ряде работ [16—23]. Были показаны также возможности применения этого метода в различных областях науки и промышленности, как, например, глубокая очистка содей металлов, разделение солей металлов на группы или выделение одного из компонентов смеси, концентрирование растворов солей металлов, качественный анализ смесей ионов, исследование процессов комплексообразования, попутное извлечение редких и рассеянных элементов при комплексном использовании рудного сырья, разделение близких по свойствам элементов, разделение органических веществ и осуществление некоторых химических реакций в органической химии [16—53]. Но наибольшие успехи применения этого метода были достигнуты при глубокой очистке веществ и получении их в спектрально чистом виде. [c.102]

    Рассмотрены физико-хим ческие основы и технология концентрирования и обезвоживания суспензий, а также очистки воды коагулянтами и флокулянтами. Дана характеристика загрязнений природных и сточных вод химической промышленности, изложены теория и практика очистки воды. Описаны способы производства и технология применения коагулянтов и флокулянтов, а также аппаратурное оформление процессов, Приведеньа сведения по регенерации коагулянтов и переработке илов, полученных в процессе водоочистки. Уделено внимание экономической эффективности различных методов очистки воды с применением коагулянтов и флокулянтов. [c.2]

    Начатые в первой пятилетке исследования в области кислотной переработки фосфатов продолжались гнироким фронтом в НИУИФе, иа ряде вузовских кафедр и в других научных организациях. Детально изучались физико-химические основы и разрабатывался оптимальный технологический режим процессов разложения фосфатов серной, азотной, фосфорной, соляной и кремнефтористоводородной кислотами с получением экстрак-цпоиной фосфорной кислоты и концентрированных удобрений на ее основе двойного суперфосфата, преципитата, аммофоса, диаммофоса, нитроаммофоса, нитроаммофоски, нитрофоса, нитрофоски и карбоаммофоски. Одновременно проводились работы по совершенствованию технологии получения простого суперфосфата созданию непрерывного процесса, аммонизации и гранулированию. Решались проблемы выделения и утилизации фтора, редкоземельных элементов, стронция и других полезных примесей, содержащихся в фосфатном сырье. [c.146]

    Рассмотрены физико-химические основы регулирования структурнореологических свойств концентрированных дисперсных систем. Большое-внимание уделено контактным взаимодействиям и структурообразованию в динамических условиях, соответствующих реальным технологическим гетерогенным процессам. Изложены основы теории создания максимальной текучести, на которой базируются методы интенсификации химико-техно логических процессов с участием дисперсных систем, а также методы получения дисперсных материалов с заданными свойствами. Обоснованы оптимальные параметры процессов дезагрегирования, смешения, транспорта, уплотнения и др. [c.2]

    Хроматографические методы разделения предполагают направленное перемещение жидкой (или газовой) смеси через сорбционную среду. Многоступенчатость такого процесса разделения обусловливает его высокую эффективность. В связи с усложнением аналитических задач, в частности, с необходимостью определения микросодержаний примесей, родственных в физико-химическом отношении основе, хроматографические разделения начинают проникать и в область анализа высокочистых материалов. Из всех видов хроматографии для решения проблем концентрирования неорганических примесей более всего подходят методы ионообменной и распределительной хроматографии. Общим недостатком хроматографических вариантов разделения является то обстоятельство, что необходимая степень разделения возможна часто только при использовании высоких слоев сорбента, больших объемов растворов и при значительной затрате времени. [c.315]

    Характер и количественные параметры процесса адсорбции микропримеси из водных растворов существенно зависят от физико-химического состояния примеси в растворе, а также от вида, величины и состояния поверхности твердой фазы. Адсорбция ионных примесей происходит, в большинстве случаев, путем ионного обмена. Однако наблюдается в некоторых условиях и молекулярная сорбция, которая характерна для 2г, НЬ, ТЬ и других многовалентных катионов [772]. Поверхность сорбирует коллоидные и псевдоколлоидные формы, когда знак ее заряда противоположен знаку заряда мицелл. Наконец, возможна хемосорбция примесей с образованием поверхностных химических соединений, неопределенных в фазовом и стехиометрическом отношении. Методы адсорбционного концентрирования предполагают извлечение микрокомпонента из среды другого, плохо сорбирующегося вещества растворителя или раствора основы. В обоих случаях активной по отношению к примеси остается очень незначительная доля общей полезной поверхности сорбента. [c.292]

    Очень малые содержания примесей, которые не могут быть определены прямым спектральным анализом данного материала, предварительно концентрируют из большой его навески. М. П. Семов предложил рациональную схему классификации всех физико-химических методов концентрирования (по фазам, сосуш ествующим в процессе разделения основы и примесей) [3, гл. 6], облегчающую практический выбор метода концентрирования при решении различных аналитических задач. [c.305]

    В основу этих схем положено совмещение в системе нефте-газосбора гидродинамических и физико-химических процессов для подготовки продукции скважин (нефть, газ и вода), для ее разделения на фазы в специальном оборудовании повышенной производительности, при максимальном концентрировании основного оборудования по подготовке нефти, газа и воды на центральных нефтесбориых пунктах. [c.23]


Смотреть страницы где упоминается термин Физико-химические основы процесса концентрирования: [c.439]    [c.97]    [c.468]    [c.9]    [c.344]   
Смотреть главы в:

Производство серной кислоты  -> Физико-химические основы процесса концентрирования




ПОИСК





Смотрите так же термины и статьи:

Основы процессов

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКИХ ПРОЦЕССОВ



© 2025 chem21.info Реклама на сайте